Decomposition of peroxides by carbon nanotubes: factors, determining their catalytic activity

  • K. V. Voitko Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • O. M. Bakalinska Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • M. T. Kartel Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
Keywords: carbon nanotubes, hydrogen peroxide, benzoyl peroxide, lauryl peroxide, diffusion


The catalytic system “carbon nanotubes/peroxide molecule” in aqueous/non-aqueous media was investigated for determining of the main factors that influence on catalyst’s effectiveness. The catalytic activity of as-synthesized multi-walled carbon nanotubes, and their modified forms (oxidized and nitrogen doped) were investigated in the decomposition of hydrogen, benzoyl (BP) and lauroyl (LP) peroxides at room temperature by measuring the volume of released gases. Ethyl acetate and tetrachloromethane were used for BP and LP decomposition respectively. Among factors that determined the catalytic performance of investigated samples their structural-sorption properties, surface chemistry and diffusion limitation have been considered. It was established that CNT show moderate activity in aqueous medium because of internal diffusion limitation. As a consequence, their performance is determined by the textural characteristic of carbon matrices. Based on the calculated diffusion coefficients it was concluded that catalysis by CNT in non-aqueous area is carried out in the kinetic region on their accessible surface. Such catalytically active surface has a lot of N-containing functional groups as well as basic O-containing ones, therefore it shows better activity towards organic peroxides. Moreover, CNT’s surface is more hydrophobic that is promoting the reaction proceeding in non-aqueous media. The decomposition rate of steric BP is lower compared to the long chain of LP. Based on this finding, it could be predicted that mesoporous CNT with high content basic functionalities and good surface accessibility should be the excellent catalyst for diacyl peroxides decomposition in organic solvents.


1. Serp P., Machado B. Nanostructured Carbon Materials for Catalysis. (Cambridge: The Royal Society of Chemistry, 2015).

2. Dreyer R.D., Bielawski C.W. Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chem. Sci. 2011. 2: 1233.

3. Figueiredo J.L., Pereira M.F.R. Carbon Materials for Catalysis. (New York: John Wiley & Sons, 2009).

4. Hermenegildo G. Allotropic carbon nanoforms as advanced metal-free catalysts or as supports. Adv. Chem. 2014. 2014: ID 906781.

5. Yu H., Peng F., Tan J., Hu X., Wang H., Yang J., Zheng W. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angew. Chem. Int. Ed. 2011. 50(17): 3978.

6. Bégin D., Ulrich G., Amadou J., Su D.S., Pham-Huu C., Ziessel R. Oxidative dehydrogenation of 9,10-dihydroanthracene using multi-walled carbon nanotubes. J. Mol. Catal. A. 2009. 302(1–2): 119.

7. Chua C.K., Pumera M. Carbocatalysis: The state of "metal‐free" catalysis. Chem. Eur. J. 2015. 21(36): 12550.

8. Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H. Carbocatalysis by graphene-based materials. Chem. Rev. 2014. 114(12): 6179.

9. Su C., Loh K.P. Carbocatalysts: graphene oxide and its derivatives. Acc. Chem. Res. 2013. 46(10): 2275.

10. Shi Y., Gan L., Wei X., Jin S., Zhang S., Meng F., Wang Z., Yan C. Fullerene-sensitized [2 + 3] cycloaddition between maleimides and iminodiacetic ester: formation of pyrrolidine derivates. Org. Lett. 2000. 2(5): 667.

11. Pacosová L., Kartusch C., Kukula P., Bokhoven J.A. Is fullerene a nonmetal catalyst in the hydrogenation of nitrobenzene. Chem. Cat.Chem. 2011. 3(1): 154.

12. Oliveira L.C.A., Silva C.N., Yoshida M.I., Lago R.M. The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon. 2004. 42(11): 2279.

13. Khalil L.B., Girgis B.S., Tawfik T.A. Decomposition of H2O2 on activated carbon obtained from olive stones. J. Chem. Technol. Biothechnol. 2001. 76(11): 1132.

14. Voitko K., Whitby R.L.D., Gun'ko V., Bakalinska O.M., Kartel M.T., Laszlo K., Cundy A.B., Mikhalovsky S.V. Morphological and chemical features of nano and macroscale carbons affecting hydrogen peroxide decomposition in aqueous media. J. Colloid Interface Sci. 2011. 361(1): 129.

15. Sun C., Yan G., Lin X., Ma S., Li Z. Theoretical studies on thermal decomposition of benzoyl peroxide in ground state. Chem. Res. Chin. Univ. 2003. 19(3): 355.

16. Ying Y., Saini R.K., Liang F., Sadana A.K., Billups W.E. Functionalization of carbon nanotubes by free radicals. Org. Lett. 2003. 5(9): 1471.

17. Walling C., Waits H.P., Milovanovic J., Pappiaonnou C.G. Polar and radical paths in the decomposition of diacyl peroxides. J. Am. Chem. Soc. 1970. 92(16): 4927.

18. Lyavinets A.S. Kinetic features of decomposition of benzoyl peroxide in superbasic media. Russ. J. Gen. Chem. 2005. 75(5): 759.

19. Smith W.F., Rossiter B.W. Induced decomposition of benzoyl peroxide by the benzophenone ketyl radical. Tetrahedron. 1969. 25(10): 2059.

20. Hasegawa S., Nishimura N. Studies on organic peroxides. V. Decomposition of benzoyl peroxide by iron(II). Bull. Chem. Soc. Jpn. 1960. 33(6): 775.

21. Kochi J.K. The Decomposition of peroxides catalyzed by copper compounds and the oxidation of alkyl radicals by cupric salts. J. Am. Chem. Soc. 1963. 85(13): 1958.

22. Yoshida M., Morinaga Y., Iyoda M., Kikuchi K., Ikemoto I., Achiba Y. Reaction of C60 with diacyl peroxides containing perfluoroalkyl groups. The first example of electron transfer reaction via C60+·in solution. Tetrahedron Lett. 1993. 34(47): 7629.

23. Engel P.S., Billups W.E., Abmayr D.W., Tsvaygboym K., Wang R. Reaction of single-walled carbon nanotubes with organic peroxides. J. Phys. Chem. C. 2008. 112(3): 695.

24. Peng H., Reverdy P., Khabashesku V.N., Margrave J.L. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem. Commun. 2003. 0(3): 362.

25. Technical Standard of Ukraine 24.1-03291669-009:2009. Carbon nanotubes.

26. Whitby R.L.D., Korobeinyk A., Glevatska K.V. Morphological changes and covalent reactivity assessment of single-layer graphene oxides under carboxylic group-targeted chemistry. Carbon. 2011. 49(2): 722.

27. Boehm H.P. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002. 40(2): 145.

28. Voitko K.V., Bakalinska O.M., Kartel M.T. Catalytic decomposition of organic peroxides in non-aqueous media under metal-free nanoporous and nanosized carbocatalysts. Him. Fiz. Tehnol. Poverhni. 2018. 9(3): 289.

29. Glevatska K.V., Bakalinska O.M., Tarasenko Yu.O., Kartel M.T. Catalytic (enzyme-like) properties of multi-walled carbon nanotubes. Visnyk Charkivskogo Nacionalnogo Universytetu im. Karasina. 2010. 895(18):248. [in Ukrainian].

30. Thiele E.W. Relation between catalytic activity and size particle. Ind. Eng. Chem. 1939. 31(7): 916.

31. Datsevich L.B. Some theoretical aspects of catalyst behavior in a catalyst particle at liquid (liquid-gas) reaction with gas production: oscillation motion in the catalyst pores. Appl. Catal. 2003. 247(1): 101.

32. Datsevich L.B. Alternating motion of liquid in catalyst pores in a liquid/liquid-gas reaction with heat or gas production. Catal. Today. 2003. 79–80: 341.

33. Blümich B., Datsevich L.B., Jess A., Oehmichen T., Ren X., Stapf S. Chaos in catalyst pores. Chem. Eng. J. 2007. 134: 35.

34. Voitko K.V., Haliarnyk D.M., Bakalinska O.M., Kartel M.T. Factors determining the catalytic activity of multi-walled carbon nanotubes in the decomposition of diacyl peroxides in non-aqueous media. Catal. Lett. 2017. 147(8): 1966.

35. Rocha R.P., Sousa J.P.S., Silva A.M.T., Pereira M.F.R., Figueiredo J.L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Appl. Catal. B. 2011. 104(3–4): 330.

36. Pels R., Kapteijn F., Moulijn J.A., Zhu Q., Thomas K.M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon. 1995. 33(11): 1641.

37. Rodil S.E., Muhl S. Bonding in amorphous carbon nitride. Diamond Relat. Mater. 2004. 13(4–8): 1521.

38. Lin Y.C., Chiu P.W. Controllable graphene N-doping with ammonia plasma. Appl. Phys. Lett. 2010. 96(13): 133110.

39. Titantah J.T., Lamoen D. First-principles characterization of amorphous carbon nitride systems: structural and electronic properties. Phys. Status. Solidi. 2006. 203(12): 3191.

40. Soria-Sánchez M., Castillejos-López E., Maroto-Valiente A., Pereira M.F.R., Órfão J.J.M., Guerrero-Ruiz A. High efficiency of the cylindrical mesopores of MWCNTs for the catalytic wet peroxide oxidation of C.I. Reactive Red 241 dissolved in water. Appl. Catal. B. 2012. 121–122: 182.

41. Voitko K., Tóth A., Demianenko E., Dobos G., Berke B., Bakalinska O., Grebenyuk A., Tombácz E., Kuts V., Tarasenko Y., Kartel M., László K. Catalytic performance of carbon nanotubes in H2O2 decomposition: Experimental and quantum chemical study. J. Colloid Interface Sci. 2015. 437: 283.

42. Gill G.B., Williams G.H. Aroyl peroxides. Part IV. The decomposition of benzoyl peroxide in nitrobenzene. The effect of added nitrobenzene on the decomposition of benzoyl peroxide in benzene. J. Chem. Soc. B. 1966. 0(0): 880.

43. Pobedimskii D.G. Kinetics and mechanism of the reaction of peroxy-compounds with phosphites, sulphides, and aromatic amines. Russ. Chem. Rev. 1971. 40(2): 142.

44. Morsi S.E., Zaki A.B., El-Shamy T.M., Habib A. The role of charge transfer interactions in the decomposition of organic peroxides—I: Benzoyl peroxide-amine systems in non-restricted fluid media. Eur. Polym. J. 1976. 12(7): 417.

45. Morsi S.E., Zaki A.B., El-Khyami L.A. The role of charge transfer interactions in the decomposition of organic peroxides—II: Spontaneous and amine-induced decomposition of dibenzoyl peroxide in partially restricted media. Eur. Polym. J. 1977. 13(11): 851.

46. Figueiredo J.L., Pereira M.F.R., Freitas M.M.A., Órfão J.J.M. Modification of the surface chemistry of activated carbons. Carbon. 1999. 37(9): 1379.

47. Umek P., Seo J.W., Hernadi K., Mrzel A., Pechy P., Mihailovic D.D., Laszlo F. Addition of carbon radicals generated from organic peroxides to single wall carbon nanotubes. Chem. Mater. 2003. 15(25): 4751.

How to Cite
Voitko, K. V., Bakalinska, O. M., & Kartel, M. T. (2019). Decomposition of peroxides by carbon nanotubes: factors, determining their catalytic activity. Surface, (10(25), 228-243.
Nanomaterials and nanotechnologies