Studying the structure of nanodiamnds and their influence on the microvispensity of rat erythrocyte membranes by the method of spin probes

  • N. T. Kartel Chuyko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • L. V. Ivanov Chuyko Institute of Surface Chemistry of National Academy of Sciences of Ukraine
  • A. N. Lyapunov Institute of Monocrystals of the National Academy of Sciences of Ukraine
  • O. A. Nardid Institute of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine
  • O. V. Scherbak Kharkov Veterinary Academy
  • O. A. Gurova Nikolaev Institute of Inorganic Chemistry
  • A. V. Ototrub Novosibirsk State University
Keywords: spin probe, detonation nanodiamonds, electron paramagnetic resonance, paramagnetic centers, free radical processes, membrane microviscosity, bioavailability

Abstract

Some features of the NDA structure, antioxidant properties, and the effect of NDA nanoparticles on the microviscosity of rat erythrocyte membranes were studied using the EPR method and spin probes. It is shown that when the concentration of DND in a water suspension equal to 1 mg/ml, partial agglomeration of DND particles occurs, which disappears when the suspension is diluted. The EPR spectra (recovery of the TEMPOL spin probe) revealed a change in the antioxidant activity of the studied DND with time, which allows the use of the EPR method for rapid testing of DND samples from different manufacturers. The calculation of the parameters of the EPR spectra showed that the presence of 25 µg/ml of DND in a suspension of red blood cells does not affect the correlation time of the probe in the membrane within the experimental error, and consequently, the microviscosity of the red blood cell membranes. The introduction of DND into a suspension of erythrocytes at a concentration of 25 μg/ml does not lead to significant changes in the microviscosity of erythrocyte membranes, which indicates a low cytotoxicity of DND at these concentrations.

 

References

1. Yakovlev R.Yu., Solomatin A.S., Leonidov N.B., Kulakova I.I., Lisichkin G.V. Detonation nanodiamond - a promising carrier for the creation of drug delivery systems. Russ. Chem. J. 2012. 56(3–4): 114. [in Russian].

2. Badun G.A., Chernysheva M.G., Yakovlev R.Y., Leonidov N.B., Semenenko M.N., Lisichkin G.V. A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method. Radiochim. Acta. 2014. 102(10): 941. https://doi.org/10.1515/ract-2013-2155

3. Yakovlev R.Y., Lisichkin G.V., Leonidov N.B. Development and investigation of functionalized nanodiamonds for pharmaceutical and medical applications. In: Mediterranean – East-Europe Meeting Multifunctional Nanomaterials: NanoEuroMed 2011. (Uzhgorod, 2011). P. 169.

4. Yakovlev R.Yu., Badun G.A., Chernysheva M.G., Leonidov N.B., Lisichkin G.V. Tritium labeling nanodiamond and its applications in transmembrane diffusion and biodistribution studies. In: International Conference on Diamond and Carbon Materials. (Riva del Garda, 2013).

5. Dolmatov V.Yu. Ultradispersed diamonds of detonation synthesis: properties and applications. Uspekhi Khimii. 2001. 70: 687. [in Russian]. https://doi.org/10.1070/RC2001v070n07ABEH000665

6. Dolmatov V.Yu., Nguyen B.T.T., Lapchuk N.M., Kozlov A.S. Ostrovsky V.A. Study of doped detonation nanodiamonds by electron paramagnetic resonance. Materials and structures of modern electronics: collection of articles. scientific tr. VII International scientific conf., dedicated. 50th anniversary of the Department. semiconductor physics and nanoelectronics, Minsk, 12–13 oct. 2016. Minsk: Ed. Center of BSU. 2016. P. 234. [in Russian].

7. Inzhevatkin E.V., Baron A.V., Maksimov N.G., Volkova M.B., Puzyr A.P., Ronzhin N.O., Bondar V.S. Using EPR spectrometry to detect nanodiamonds in biomaterials and to study their distribution in animals after intravenous administration. Aktual'nyye voprosy biologicheskoy fiziki i khimii. 2018. 3(1): 183. [in Russian].

8. Puzyr A.P., Bondar V.S., Bukayemsky A.A., Selyutin G.E., Kargin V.F. Physical and chemical properties of modified nanodiamonds. NATO Sci. Ser. II. Math. Phys. Chem. 2005. 192: 261.

9. Solmatova A.A., Il'in I.V., Shakhov F.M., Kidalov S.V., Vul A.Ya., Yavkin B.V., Mamin G.V., Orlinsky S.B., Baranov P.G. Detection by electron paramagnetic resonance of a giant concentration of nitrogen-vacant defects in detonation nanodiamonds. Lett. JETP. 2010. 92: 106. [in Russian].

10. Baron A.V., Maksimov N.G., Inzhevatkin E.V., Volkova M.B., Puzyr A.P., Bondar V.S. Application of the EPR method for the determination of nanodiamonds in biological materials. Abstracts of the XVIII All-Russian Symposium with international participation "Complex systems under extreme conditions". (Krasnoyarsk: Publishing House SFU, 2016). [in Russian].

11. Chiganova G.A. Investigation of the surface properties of ultrafine diamonds. Colloid J. 1994. 56(2): 266. [in Russian].

12. Liechtenstein G.I. The method of spin labels in molecular biology. (Moscow: Nauka, 1974). [in Russian].

13. Berliner L., Nordio P.L., Fried J. The method of spin labels. Theory and Applications. (Moscow: Mir, 1979). [in Russian].

14. Ivanov L.V., Lyapunov A.N., Kartel N.T., Nardid O.A., Okotrub A.V., Kirilyuk I.A., Cherkashina Ya.O. Delivery of lipophilic spin probes with carbon nanotubes to erythrocytes and blood plasma. Surface. 2014. 6(21): 292. [in Russian].

15. Kartel N.T., Ivanov L.V., Lyapunov A.N., Nardid O.A., Okotrub A.V., Kirilyuk I.A., Cherkashina Ya.O. Evaluation of the effect of carbon nanotubes on the microviscosity of erythrocyte membranes. Dopovidi Nat. Acad. Sciences of Ukraine. 2015. 3: 114. [in Russian]. https://doi.org/10.15407/dopovidi2015.03.114

16. Shames A.I., Osipov V.Yu., Aleksenskiy A.E., Osawa E., Vul A.Ya. Locating inherent unpaired orbital sprint in detonation nanodiamonds throud the targeted surface decoration by paramagnetic problems. Diamond. Relat. Mater. 2011 20: 318.

17. Osipov V.Yu., Shakhov F.M., Efimov N.N., Minin V.V., Kidalov S.V., Vul A.Ya. Identification of paramagnetic centers of nitrogen (P1) in diamond crystallites obtained by sintering detonation nanodiamonds under high pressure and temperature. Fizika Tverdogo Tela. 2017: 59(6). [in Russian].

18. Kartel N.T., Ivanov L.V., Nardyd O.A., Cherkashyna Ya.O., Okotrub A.V., Derymedved L.V. The evaluation of carbon nanotubes impact on mitochondrial activity of cells in different organs tissues by means of spin probes method. Modern Science – Moderní věda. 2016. 2: 123.

Published
2019-01-20
How to Cite
Kartel, N. T., Ivanov, L. V., Lyapunov, A. N., Nardid, O. A., Scherbak, O. V., Gurova, O. A., & Ototrub, A. V. (2019). Studying the structure of nanodiamnds and their influence on the microvispensity of rat erythrocyte membranes by the method of spin probes. Surface, (10(25), 286-297. https://doi.org/10.15407/Surface.2018.10.287
Section
Medical and biological problems of surface