Біоскло та його застосування в сучасному лікуванні остеоонкологічних захворювань

  • С. П. Туранська Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • А. П. Кусяк Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • А. Л. Петрановська Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • В. В. Туров Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • П. П. Горбик Інститут хімії поверхні ім. О.О.Чуйка Національної академії наук України
  • В. А. Дубок Інститут проблем матеріалознавства ім. І.М. Францевича Національної академії наук України
  • О. А. Бур'янов Національний медичний університет ім. О.О. Богомольця
  • В. С. Чорний Національний медичний університет ім. О.О. Богомольця
  • Ю. Л. Соболевський Національний медичний університет ім. О.О. Богомольця
  • В. Ф. Чехун Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького Національної академії наук України
Ключові слова: біокераміка, мультифункціональне біоскло, синтез, імплантати, остеокондуктивні властивості, засоби адресної доставки, протипухлинна терапія кісток

Анотація

Пухлинні захворювання кісток є однією з основних проблем у сучасній клінічній практиці. Після хірургічного втручання може залишатися деяка частина пухлинних клітин, здатних до проліферації, що призводить до рецидиву пухлини. Крім того, хірургічне видалення пухлин кістки створює дефекти кісткової тканини. Тому проблема виготовлення специфічних біоматеріалів з подвійною функцією лікування пухлин кістки і регенерації кісткових дефектів набула пріорітетного значення.

Застосування методів адресної доставки та локального  контрольованого вивільнення препаратів сприяє створенню бажаної терапевтичної концентрації ліків у вогнищі захворювання та підвищує їх біодоступність. В останні роки розроблено перспективні зразки, здатні до ефективного контрольованого вивільнення, в яких цисплатин, доксорубіцин та гемцитабін використовувалися в якості модельних хіміотерапевтичних препаратів. Вказані підходи виявилися перспективними і показали  потенційну можливість знищення залишкових пухлинних клітин, однак, вони можуть набувати резистентності до таких препаратів, що призводить до невдачі лікування.

Основною метою огляду є узагальнення новітнього світового досвіду синтезу, дослідження та застосування композитів на основі біоактивних керамічних матеріалів та сучасних протипухлинних препаратів, як перспективних  імплантатів, що уособлюють нове покоління комплексних лікарських засобів спрямованої доставки з остеокондуктивними та протипухлинними властивостями, пролонгованою дією, для локального використання.

Наведено приклади застосування біоскла з цитотоксичними / цитостатичними компонентами та результати розробки новітніх напрямків протипухлинної терапії кісток, в яких не спостерігається набуття резистентності пухлинних клітин. Протипухлинні функції таких мультифункціональних зразків здійснються, наприклад, методами хіміотерапії, фототермічної терапії, магнітної гіпертермії, а також фотодинамічної терапії. Наведені дані мають науковий, практичний та методичний інтерес.

Посилання

1. Shymon V.М., Alfeldii S.P., Shymon М.V., Stoika V.V. Application of bioglass in treatment of fractures and defects of long bones. Actual Problems of Contemporary Medicine: Herald of Ukrainian Medical Stomatology Academy. 2019. 19(3): 95. [in Ukrainian].

2. Shymon V.М., Alfeldii S.P., Shymon М.V., Karpins'kyi М.Yu., Karpins'ka О.D., Subbota І.А. Experimental investigation of durability of rat bones with defect filled by bioglass. Trauma. 2019. 20(5): 70. [in Ukrainian]. https://doi.org/10.22141/1608-1706.5.20.2019.185559

3. Filipenko V.А., Karpins'kyi М.Yu., Bondarenko S.Ye., Zhygun А.І., Tan'kut V.О., Akondzhom М. Durability of bone-metallic block for various types of implant surfaces in conditions of normal state of bone tissue and in simulation of osteoporosis in experiments with rats. Trauma. 2016. 17(4): 60. [in Ukrainian]. https://doi.org/10.22141/1608-1706.4.17.2016.77491

4. Filipenko V.А., Karpins'kyi М.Yu., Karpins'ka О.D., Tan'kut V.О., Akondzhom М., Bondarenko S.Ye. Durability of bone-metallic block for various types of implant surfaces in conditions of normal state of bone tissue and osteoporosis in rats. Orthopedics, Traumatology and Prosthetics. 2016. 1: 72. [in Ukrainian]. https://doi.org/10.15674/0030-59872016172-77

5. Dedukh N.V., Karpins'kyi М.Yu., Chzhou L., Malyshkina S.V. Regeneration and mechanic durability of bone in conditions of implantation on carbon material. Orthopedics, Traumatology and Prosthetics. 2016. 3: 41. [in Russian]. https://doi.org/10.15674/0030-59872016341-47

6. Khvysiuk О.М., Pavlov О.Д., Karpins'kyi М.Yu., Karpins'ka О.D. Investigation of duration of preservation of hard fixation of bone fragments with biodegradable on-bone plates based on polylactide. Trauma. 2018. 19(5): 102. [in Ukrainian]. https://doi.org/10.22141/1608-1706.5.19.2018.146652

7. https://www.bbc.com/ukrainian/vert-fut-41244324

8. Fiume E., Barberi J., Verné E., Baino F. Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J. Funct. Biomater. 2018. 9(1): 24. https://doi.org/10.3390/jfb9010024

9. Essien E.R., Atasie V.N., Udobang E.U. Microwave energy-assisted formation of bioactive CaO-MgO-SiO2 ternary glass from bio-wastes. Bulletin of Materials Science. 2016. 39(4): 989. https://doi.org/10.1007/s12034-016-1251-6

10. Weng L., Boda S.K., Teusink M.J., Shuler F.D., Li X., Xie J. Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Appl. Mater. Interfaces. 2017. 9(29): 24484. https://doi.org/10.1021/acsami.7b06521

11. Hoppe A., Jokic B., Janackovic D., Fey T., Greil P., Romeis S., Schmidt J., Peukert W., Lao J., Jallot E., Boccaccini A.R. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl. Mater. Interfaces. 2014. 6(4): 2865. https://doi.org/10.1021/am405354y

12. Azevedo M.M., Jell G., O'Donnell M.D., Law R.V., Hill R.G., Stevens M.M. Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J. Mater. Chem. 2010. 20(40): 8854. https://doi.org/10.1039/c0jm01111h

13. Bellantone M., Williams H.D., Hench L.L. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrobial Agents and Chemotherapy. 2002. 46: 1940. https://doi.org/10.1128/AAC.46.6.1940-1945.2002

14. Dang W., Li T., Li B., Ma H., Zhai D., Wang X., Chang J., Xiao Y., Wang J., Wu C. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials. 2018. 160: 92. https://doi.org/10.1016/j.biomaterials.2017.11.020

15. Zhang J.H., Zhao S.C., Zhu Y.F., Huang Y., Zhu M., Tao C., Zhang C. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 2014. 10(5): 2269. https://doi.org/10.1016/j.actbio.2014.01.001

16. Pires I., Gouveia B., Rodrigues J., Fonte R. Characterization of sintered hydroxyapatite samples produced by 3D printing. Rapid Prototyp. J. 2014. 20: 413. https://doi.org/10.1108/RPJ-05-2012-0050

17. Almela T., Brook I.M., Khoshroo K., Rasoulianboroujeni M., Fahimipour F. Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting. 2017. 6: 1. https://doi.org/10.1016/j.bprint.2017.04.001

18. Kolan K.C., Leu M.C., Hilmas G.E., Velez M., Mech J. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication. 2011. 3: 025004. https://doi.org/10.1088/1758-5082/3/2/025004

19. Jiajun X., Huifeng S., Dongshuang H., Xianyan Y., Chunlei Y., Juan Y., Yong H., Jianzhong F., Zhongru G. Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Commun. 2015. 5(4): 631. https://doi.org/10.1557/mrc.2015.74

20. Shanshan P., Shengyang F., Yufang Z. Multifunctional bioceramic scaffolds for tumor therapy and bone tissue engineering. Journal of Bioanalysis & Biomedicine. 2019. 11(1): 120. https://doi.org/10.4172/1948-593X.1000e160

21. Lo V.C.K., Akens M.K., Wise-Milestone L., Yee A.J.M., Wilson B.C., Whyne C.M. The benefits of photodynamic therapy on vertebral bone are maintained and enhanced by combination treatment with bisphosphonates and radiation therapy. J. Orthop. Res. 2013. 31(9): 1398. https://doi.org/10.1002/jor.22373

22. Manzano M. Ceramics for Drug Delivery. In: Bio-Ceramics with Clinical Applications. (Wiley, John Wiley & Sons, Ltd, 2014). https://doi.org/10.1002/9781118406748.ch12

23. Bigham A., Aghajanian A.H., Saudi A., Rafienia M. Hierarchical porous Mg2SiO4-CoFe2O4 nanomagnetic scaffold for bone cancer therapy and regeneration: Surface modification and in vitro studies. Mater. Sci. Eng. C. 2020. 109: 110579. https://doi.org/10.1016/j.msec.2019.110579

24. Paris J.L., Manzano M., Cabañas M.V., Vallet Regí M. Mesoporous silica nanoparticles engineered for ultrasound-induced uptake by cancer cells. Nanoscale. 2018. 10: 6402. https://doi.org/10.1039/C8NR00693H

25. Farzin A., Fathi M., Emadi R. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. Mater. Sci. Eng. C. 2017. 70: 21. https://doi.org/10.1016/j.msec.2016.08.060

26. Mondal S., Pal U. 3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications. J. Drug Deliv. Sci. Technol. 2019. 53: 101131. https://doi.org/10.1016/j.jddst.2019.101131

27. Chitambar C.R. Gallium-containing anticancer compounds. Future Med. Chem. 2012. 4(10): 1257. https://doi.org/10.4155/fmc.12.69

28. Collery P., Keppler B., Madoulet C., Desoize B. Gallium in cancer treatment. Crit. Rev. Oncol. Hematol. 2002. 42(3): 283. https://doi.org/10.1016/S1040-8428(01)00225-6

29. Rana K., Souza L., Isaacs M.A., Raja F., Morrell A.P., Martin R.A. Development and characterisation of gallium-doped bioactive glasses for potential bone cancer applications. ACS Biomater. Sci. Eng. 2017. 3(12): 3425. https://doi.org/10.1021/acsbiomaterials.7b00283

30. Chitambar C.R. Medical applications and toxicities of gallium compounds. International Journal of Environmental Research and Public Health. 2010. 7: 2337. https://doi.org/10.3390/ijerph7052337

31. Ortega R., Suda A., Devès G. Nuclear microprobe imaging of gallium nitrate in cancer cells. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. 2003. 210: 364. https://doi.org/10.1016/S0168-583X(03)01052-8

32. Chitambar C.R., Wereley J.P., Matsuyama S. Gallium-induced cell death in lymphoma: role of transferrin receptor cycling, involvement of Bax and the mitochondria, and effects of proteasome inhibition. Mol. Cancer Ther. 2006. 5(11): 2834. https://doi.org/10.1158/1535-7163.MCT-06-0285

33. Hongzeng W., Jinming Z., Ruoheng D., Jianfa X., Helin F. Transferrin receptor-1 and VEGF are prognostic factors for osteosarcoma. J. Orthop. Surg. Res. 2019. 14: 296. https://doi.org/10.1186/s13018-019-1301-z

34. De Vico G., Martano M., Maiolino P., Carella F., Leonardi L. Expression of transferrin receptor-1 (TFR-1) in canine osteosarcomas. Epub. 2020. 6(3): 272. https://doi.org/10.1002/vms3.258

35. Lusvardi G., Malavasi G., Menabue L., Shruti S. Gallium-containing phosphosilicate glasses: functionalization and in-vitro bioactivity. Materials Science and Engineering: C. 2013. 33: 3190. https://doi.org/10.1016/j.msec.2013.03.046

36. Franchini M., Lusvardi G., Malavasi G., Menabue L. Gallium-containing phospho-silicate glasses: Synthesis and in vitro bioactivity. Materials Science and Engineering: C. 2012. 32: 1401. https://doi.org/10.1016/j.msec.2012.04.016

37. Martin R.A., Twyman H.L., Rees G.J., Smith J.M., Barney E.R., Smith M.E., Hanna J.V., Newport R.J. A structural investigation of the alkali metal site distribution within bioactive glass using neutron diffraction and multinuclear solid state NMR. Phys. Chem. Chem. Phys. 2012. 14(35): 12105. https://doi.org/10.1039/c2cp41725a

38. Saravanapavan P., Hench L.L. Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. Journal of biomedical materials research. 2001. 54: 608. https://doi.org/10.1002/1097-4636(20010315)54:4<608::AID-JBM180>3.0.CO;2-U

39. El-Kady A.M., Farag M.M. Bioactive glass nanoparticles as a new delivery system for sustained 5-fluorouracil release: characterization and evaluation of drug release mechanism. Journal of Nanomaterials. 2015. 2015: 1. https://doi.org/10.1155/2015/839207

40. Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Turov V.V., Gorbyk P.P. Synthesis and properties of magnetosensitive polyfunctional nanocomposites for application in oncology. Poverkhnost'. 2017. 9(24): 165. [in Ukrainian].

https://doi.org/10.15407/Surface.2017.09.165

41. Abramov M.V., Kusyak A.P., Kaminskiy O.M., Turanska S.P., Petranovska A.L., Kusyak N.V., Gorbyk P.P. Magnetosensitive nanocomposites based on cisplatin and doxorubicin for application in oncology. Horizons in World Physics. 2017. 293: 1.

42. Abramov M.V., Petranovska A.L., Pylypchuk Ye.V., Turanska S.P., Opanashchuk N.М., Kusyak N.V., Gorobets' S.V., Gorbyk P.P. Magnetosensitive polyfunctional nanocomposites based on magnetite and hydroxyapatite for application in oncology. Poverkhnost'. 2018. 10(25): 245.

43. Gorbyk P.P. Medico-biological nanocomposites with functions of nanorobots: state of research, development and prospects for practical implementation. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 128. [in Ukrainian]. https://doi.org/10.15407/hftp11.01.128

44. Abramov M.V., Turanska S.P., Gorbyk P.P. Magnetic properties of nanocomposites of superparamagnetic core-shell type. Metalofizyka i Novitni Tehnol. 2018. 40(4): 423. [in Ukrainian]. https://doi.org/10.15407/mfint.40.04.0423

45. Abramov M.V., Turanska S.P., Gorbyk P.P. Magnetic properties of fluids based on polyfunctional nanocomposites of superparamagnetic core-multilevel shell type. Metalofizyka i Novitni Tehnol. 2018. 40(10): 1283. [in Ukrainian]. https://doi.org/10.15407/mfint.40.10.1283

46. Antitumor nanocomposite "Feroplat". https://files.nas.gov.ua/NASDevelopmentsBook/PDF/0760.pdf &nbsp;

47. Luk'yanova N.Yu. Doctoral (Biol.) Thesis. (Kyiv, 2015). [in Ukrainian].

48. Patent UA 112490. Chekhun V.F., Lukyanova N.Y., Gorbyk P.P., Todor I.M., Petranovska A.L., Boshitska N.V., Bozhko I.V. Antitumor ferromagnetic nanocomposite. 2016.

49. Kusyak А.P., Petranovska A.L., Dubok V.A., Chornyi V.S., Bur'yanov O.A., Korniichuk N.M., Gorbyk P.P. Adsorption immobilization of chemotherapeutic drug cisplatin on the surface of sol-gel bioglass 60S. Funct. Mater. 2021. 28(1): 97.

50. Petranovska А.L., Kusyak А.Р., Korniichuk N.M., Turanska S.P., Gorbyk P.P., Lukyanova N.Yu., Chekhun V.F. Antitumor vector systems based on bioactive lectin of Bacillus subtilis ІМВ B-7724. Him. Fiz. Tehnol. Poverhni. 2021. 12(3): 190. https://doi.org/10.15407/hftp12.03.190

51. Liub S., Su X.G. The synthesis and application of I-III-VI type quantum dots. RSC Adv. 2014. 4: 43415. https://doi.org/10.1039/C4RA05677A

52. Ghosh S., Avellini T., Petrelli A., Kriegel I., Gaspari R., Almeida G., Bertoni G., Cavalli A., Scotognella F., Pellegrino T., Manna L. Colloidal CuFeS2 nanocrystals: intermediate Fe d-band leads to high photothermal conversion efficiency. Chem. Mater. 2016. 28: 4848. https://doi.org/10.1021/acs.chemmater.6b02192

53. Jiang X.X., Zhang S.H., Ren F., Chen L., Zeng J.F., Zhu M., Cheng Z.X., Gao M.Y., Li Z. Ultrasmall magnetic CuFeSe2 ternary nanocrystals for multimodal imaging guided photothermal therapy of cancer. ACS Nano. 2017. 11: 5633. https://doi.org/10.1021/acsnano.7b01032

54. Ma H.S., Jiang C., Zhai D., Luo Y.X., Chen Y., Lv F., Yi Z.F., Deng Y., Wang J.W., Chang J., Wu C.T. A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv. Funct. Mater. 2016. 26: 1197. https://doi.org/10.1002/adfm.201504142

55. Wu C.T., Luo Y.X., Cuniberti G., Xiao Y., Gelinsky M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomaterialia. 2011. 7(6): 2644. https://doi.org/10.1016/j.actbio.2011.03.009

56. Wu C.T., Zhou Y.H., Fan W., Han P.P., Chang J., Yuen J., Zhang M.L., Xiao Y. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012. 33: 2076. https://doi.org/10.1016/j.biomaterials.2011.11.042

57. Wang H., Xiangqiong Z., Libin P., Haihang W., Bocai L., Zhengwei D., Edwina L.X.Q., Na M., Deping W., Peng H., Haoran H., Jiusheng L. Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds. Chemical Engineering Journal. 2020. 396: 125081. https://doi.org/10.1016/j.cej.2020.125081

58. Wang H., Zhao S., Zou J., Zhu K. Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles. J. Mater. Chem. B. 2015. 3(21): 4377. https://doi.org/10.1039/C5TB00062A

59. Wang L., Long N.J., Li L., Lu Y., Li M., Cao J., Zhang Y., Zhang Q., Xu S., Yang Z., Mao C., Peng M. Multi-functional bismuth-doped bioglasses: combining bioactivity and photothermal response for bone tumor treatment and tissue repair. Light: Science & Applications. 2018. 7(1): 1. https://doi.org/10.1038/s41377-018-0007-z

60. Wang L.P., Tan L.L., Yue Y.Z., Peng M.Y., Qiu J.R. Efficient enhancement of bismuth NIR luminescence by aluminum and its mechanism in bismuth-doped germanate laser glass. J. Am. Ceram. Soc. 2016. 99: 2071. https://doi.org/10.1111/jace.14197

61. Wentao D., Bing M., Zhiguang H., Rongcai L., Xiaoya W., Tian L., JinFu W., Nan M., Haibo Z., Jiang C., Chengtie W. LaB6 surface chemistry-reinforced scaffolds for treating bone tumors and bone defects. Applied Materials Today. 2019. 16: 42. https://doi.org/10.1016/j.apmt.2019.04.015

62. Shengyang F., Haoran H., Jiajie C. Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration. Chemical Engineering Journal. 2020. 382: 122928. https://doi.org/10.1016/j.cej.2019.122928

63. Jia-Wei L., Fan Y., Qin-Fei K., Xue-Tao X., Ya-Ping G. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine: Nanotechnology, Biology and Medicine. 2018. 14(3): 811. https://doi.org/10.1016/j.nano.2017.12.025

64. Yaqin L., Rongcai L., Lingling M., Hui Z., Chun F., Jiang C., Chengtie W. Mesoporous bioactive glass for synergistic therapy of tumor and regeneration of bone tissue. Applied Materials Today. 2020. 19: 100578. https://doi.org/10.1016/j.apmt.2020.100578

65. Ulaschik V.S. Local hyperthermia in oncology: using of magnetic field, laser radiation, ultrasound. Vopr. Kurortologii, Fizioterapii i Lechebnoi Fizicheskoi Kultury. 2014. 2: 48. [in Russian]. https://doi.org/10.17116/kurort2015448-53

66. Gorobets S.V., Gorobets O.Yu., Gorbyk P.P., Uvarova I.V. Functional bio- and nanomaterials for medical purposes. (Kyiv: Condor, 2018). [in Ukrainian].

67. Rahman M.S.U., Tahir M.A., Noreen S., Yasir M., Ahmad I., Khan M.B., Ali K.W., Shoaib M., Bahadur A., Iqbal S. Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery. RSC Advances. 2020. 10: 21413. https://doi.org/10.1039/C9RA09349D

68. Koohkan R., Hooshmand T., Mohebbi-Kalhori D., Tahriri M., Marefati M.T. Synthesis, characterization and in vitro biological evaluation of copper-containing magnetic bioactive glasses for hyperthermia in bone defect treatment. ACS Biomaterials Science & Engineering. 2018. 4(5): 1797. https://doi.org/10.1021/acsbiomaterials.7b01030

69. Koohkan R., Hooshmand T., Tahriri M., Mohebbi-Kalhori D. Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses. Ceramics International. 2018. 44: 2390. https://doi.org/10.1016/j.ceramint.2017.10.208

70. Salinas A.J., Shruti S., Malavasi G., Menabue L., Vallet-Regí M. Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomaterialia. 2011. 7(9): 3452. https://doi.org/10.1016/j.actbio.2011.05.033

71. Zhao S., Li L., Wang H., Zhang Y., Cheng X., Zhou N., Rahaman M.N., Liu Z., Huang W., Zhang C. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model. Biomaterials. 2015. 53: 379. https://doi.org/10.1016/j.biomaterials.2015.02.112

Опубліковано
2021-11-28
Як цитувати
Туранська, С. П., Кусяк, А. П., Петрановська, А. Л., Туров, В. В., Горбик, П. П., Дубок, В. А., Бур’янов, О. А., Чорний, В. С., Соболевський, Ю. Л., & Чехун, В. Ф. (2021). Біоскло та його застосування в сучасному лікуванні остеоонкологічних захворювань. Поверхня, (13(28), 206-245. https://doi.org/10.15407/Surface.2021.13.206
Розділ
Медико-біологічні проблеми поверхні