Створення 3D-продукції з використанням вуглецевих наноструктур і технологій 3D-друку (FDM, CJP, SLA, SLS)

  • Ол.Д. Золотаренко Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України / Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • Ан.Д. Золотаренко Інститут хімії поверхні ім. О.О. Чуйка НАН України / Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • О.П. Рудакова Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • Н.А. Швачко Інститут проблем матеріалознавства ім. І.М. Францевича НАН України / Київський національний університет будівництва та архітектури
  • Н.Є. Аханова Казахстансько-Британський технічний університет (КБТУ) / Казахський національний університет ім. Аль-Фарабі
  • М. Уалханова Казахський національний університет ім. Аль-Фарабі
  • Д.В. Щур Інститут проблем матеріалознавстваім. І.М. Францевича НАН України / Інститут прикладної фізики НАН України
  • М.Т. Габдулін Казахстансько-Британський технічний університет (КБТУ)
  • Ю.І. Жирко Інститут прикладної фізики НАН України
  • Т.В. Мироненко Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • О.Д. Золотаренко Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • М.В. Чимбай Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • О.О. Гаврилюк Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • Ю.О. Тарасенко Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
Ключові слова: FDM, CJP, SLA, SLS, 3D друк, 3D-вироби, нанокомпозити, вуглецеві наноматеріали (ВНМ), піроліз, плазмохімічний синтез, полімери, кераміка

Анотація

Розглядаються методи одержання вуглецевих наноструктур (ВНС), а також їх використання для створення 3D-продуктів за допомогою технологій 3D-друку (FDM, CJP, SLA, SLS). Розроблений процес виготовлення витратних матеріалів технологій 3D-друку (FDM, CJP, SLA, SLS) для створення нових композитних 3D-виробів на основі вуглецевих наноструктур. Детально проаналізовані методи синтезу ВНС, які є найбільш продуктивними та гарантують отримання цільових ВНС.

Проведено аналіз існуючих технологій 3D-друку з використанням ВНС, розроблено схему повного циклу, від перетворення графіту або іншого вуглецевмісного матеріалу при синтезі (різними методами) ВНС до створення 3D-виробів, які містять ВНС. Також розробленний процес створення композитних бухт для 3D-друку (FDM) з нанокомпозитних ниток на основі твердого полімеру, що готується у спеціальному змішувачі. Охарактеризовано процес підготовки витратного матеріалу для друку об'ємних 3D-виробів за технологіями 3D-друку (FDM, CJP, SLA, SLS) з використанням ВНС. Розглянуті витратні матеріали для 3D-виробів за технологією FDM. Проведено аналіз композитних 3D-виробів, отриманих технологіями 3D-друку FDM та CJP.

Розглянуто також три найбільш продуктивні методи синтезу ВНС: плазмохімічні у газових та рідких фазах, а також піролітичний метод. Методи синтезу гарантують отримання ВНС, та забезпечують якість цільових нанопродуктів. Розглянуті різні типи ВНС, включаючи розчинні (фуллерени та фуллереноподібні структури) та нерозчинні наноструктури (графени, вуглецеві нанотрубки та нановолокна, нанокомпозити тощо.).

Посилання

1. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology. 2007: 199. https://doi.org/10.1007/978-1-4020-5514-0_25

2. Zaginaichenko S.Y., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9

3. Boguslavskii L.Z., Rud' A.D., Kir'yan I.M., Nazarova N.S., Vinnichenko D.V. Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surface Engineering and Applied Electrochemistry. 2015. 51(2): 105. https://doi.org/10.3103/S1068375515020027

4. Matysina Z.A., Zolotarenko Ol.D., Ualkhanova M., Rudakova O.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko O.D., Chymbai M.V., Zagorulko I.V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.

5. Yakymchuk O.M., Perepelytsina O.M., Rud A.D., Kirian I.M., Sydorenko M.V. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. Physica Status Solidi (A) Applications and Materials Science. 2014. 211(12): 2778. https://doi.org/10.1002/pssa.201431358

6. Kartel N.T., Gerasimenko N.V., Tsyba N.N., Nikolaichuk A.D., Kovtun G.A. Synthesis and study of carbon sorbent prepared from polyethylene terephthalate. Russian Journal of Applied Chemistry. 2001. 74(10): 1765. https://doi.org/10.1023/A:1014894211046

7. Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 209. [in Ukrainian]

8. Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanov Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., Rud' A.D. Phase transformations of carbon under extreme energy action. Technical Physics. 2012. 57(2): 198. https://doi.org/10.1134/S106378421202017X

9. Rud A.D., Lakhnik A.M., Mikhailova S.S., Karban O.V., Surnin D.V., Gilmutdinov F.Z. Structure of Mg-C nanocomposites produced by mechano-chemical synthesis. Journal of Alloys and Compounds. 2011. 509(SUPPL. 2): S592. https://doi.org/10.1016/j.jallcom.2010.10.155

10. Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. PartF2: 53-65.

11. Zolotarenko Ol. D., Rudakova E. P., Akhanova N. Yu., Zolotarenko An. D., Shchur D. V., Matysina Z. A., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Zolotarenko A. D., Chymbai M. V., Zagorulko I. V. Comparative Analysis of Products of the Fullerenes' and Carbon-Nanostructures' Synthesis Using the SIGE and FGDG-7 Grades of Graphite. Nanosistemi, nanomateriali, nanotehnologii. 2022. 20(3): 725. https://doi.org/10.15407/nnn.20.03.725

12. Gun'ko V.M., Turov V.V., Zarko V.I., Prykhod'Ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chemical Physics. 2015. 459: 172. https://doi.org/10.1016/j.chemphys.2015.08.016

13. Nishchenko M.M., Likhtorovich S.P., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4

14. Lad'yanov V.I., Nikonov, R.M., Larionova N.S., Aksenova V.V., Mukhgalin V.V., Rud' A.D. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation. Physics of the Solid State. 2013. 55(6): 1319. https://doi.org/10.1134/S1063783413060206

15. Matysina Z.A., Zolotarenko Ol.D., Rudakova O.P., Akhanova N.Y., Pomytkin A.P., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. 23(3): 510.

16. Kartel M.T., Voitko K.V., Grebelna Y.V., Zhuravskyi S.V., Ivanenko K.O., Kulyk T.V., Makhno S.M., Sementsov Y.I. Changes in the structure and properties of graphene oxide surfaces during reduction and modification. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 179. https://doi.org/10.15407/hftp13.02.179

17. Rud A.D., Kiryan I.M. Quantitative analysis of the local atomic structure in disordered carbon. Journal of Non-Crystalline Solids. 2014. 386: 1. https://doi.org/10.1016/j.jnoncrysol.2013.11.010

18. Sementsov Yu.I., Cherniuk O.А., Zhuravskyi S.V., Bo W., Voitko K.V., Bakalinska O.M., Kartel, M.T. Synthesis and catalytic properties of nitrogen-containing carbon nanotubes. Himia, Fizika ta Tehnologia Poverhni. 2021. 12(2): 135. https://doi.org/10.15407/hftp12.02.135

19. Barany S., Kartel' N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid Journal. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020

20. Ushakova L.M., Ivanenko K.I., Sigareva N.V., Terets M.І., Kartel M.Т., Sementsov Yu.І. Influence of nanofiller on the structure and properties of macromolecular compounds. Physics and Chemistry of Solid State. 2022. 23(2): 394. https://doi.org/10.15330/pcss.23.2.394-400

21. Sementsov Y., Prikhod'ko G., Kartel M., Tsebrenko M., Aleksyeyeva T., Ulyanchychi N. Carbon nanotubes filled composite materials. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 183. https://doi.org/10.1007/978-94-007-0899-0_16

22. Harea E., Stoček R., Storozhuk L., Sementsov Y., Kartel N. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Applied Nanoscience. 2019. 9(5): 899. https://doi.org/10.1007/s13204-018-0797-6

23. Gun'ko V.M., Turov V.V., Protsak I., Krupska T.V., Pakhlov E.M., Zhang D. Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloids and Interface Science Communications. 2020. 35:100251. https://doi.org/10.1016/j.colcom.2020.100251

24. Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(3): 259. [in Ukrainian]

25. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina М., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofiz. NoveishieTekhnol. 2022. 44(3): 343.

26. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 415.

27. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Tarasenko Yu. O., Zagorulko I.V., Zolotarenko A.D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofiz. Noveishie Tekhnol. 2021. 43(10): 1417. [in Ukrainian]

28. Stavitskaya S.S., Mironyuk T.I., Kartel' N.T., Strelko V.V. Sorption characteristics of "food fibers" in secondary products of processing of vegetable raw materials. Russian Journal of Applied Chemistry. 2001. 74(4): 592. https://doi.org/10.1023/A:1012706531317

29. Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chemical Physics Letters. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039

30. Zakutevskii O.I., Psareva T.S., Strelko V.V., Kartel' N.T. Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry. 2007. 49(1): 67. https://doi.org/10.1134/S1066362207010110

31. Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Materials. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409

32. Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova. 2017. 12(1): 37. https://doi.org/10.19261/cjm.2017.401

33. Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019. 570: 471. https://doi.org/10.1016/j.colsurfa.2019.03.056

34. Galysh V., Sevastyanova O., Кartel M., Lindström M.E., Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. Journal of Thermal Analysis and Calorimetry. 2017. 128(2):1019. https://doi.org/10.1007/s10973-016-5984-7

35. Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.V., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. Journal of Colloid and Interface Science. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065

36. Gabdullin M.T., Khamitova K.K., Ismailov D.V., Sultangazina M.N., Kerimbekov D.S., Yegemova S.S., Chernoshtan A., Schur D.V. Use of nanostructured materials for the sorption of heavy metals ions. IOP Conference Series: Materials Science and Engineering. 2019. 511(1): 12044. https://doi.org/10.1088/1757-899X/511/1/012044

37. Sementsov Yu.I., Prikhod'Ko G.P., Melezhik A.V., Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. 2010: 347. https://doi.org/10.1007/978-90-481-2309-4_27

38. Gun'ko V.M., Lupascu, T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084

39. Khamitova K.K., Kayupov B.A., Yegemova S.S., Gabdullin M.T., Abdullin Kh.A., Ismailov D.V., Kerimbekov D.S. The use of fullerenes as a biologically active molecule. International Journal of Nanotechnology. 2019. 16(1-3):100. https://doi.org/10.1504/IJNT.2019.102396

40. Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chemical Physics. 2017. 483-484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007

41. Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. Journal of Colloid and Interface Science. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102

42. Krupska T.V., Turova A.A., Un'Ko V.M., Turov V.V. Influence of highly dispersed materials on physiological activity of yeast cells. Biopolymers and Cell. 2009. 25(4): 290. https://doi.org/10.7124/bc.0007E8

43. Tkachenko S., Brodnikovskyi D., Cizek J. Komarov P., Brodnikovskyi Ye., Tymoshenko Ya., Csaki S., Pinchuk M., Vasylyev O., Čelko L., Gadzyra M., Chraska T. Novel Ti-Si-C composites for SOFC interconnect materials: Production optimization. Ceramics International. 2022. 48(19(A)): 27785. https://doi.org/10.1016/j.ceramint.2022.06.081

44. Podhurska V., Brodnikovskyi D., Vasyliv B., Gadzyra M., Tkachenko S., Čelko L., Ostash O., Brodnikovska I., Brodnikovskyi Ye., Vasylyev O. Ti-Si-C in-situ composite as a potencial material for lightweight SOFC interconnects. Promising materials and processes in applied electrochemistry (Kyiv : KNUTD, 2020).

45. Brodnikovskyi Y., McDonald N., Polishko I., Brodnikovskyi D., Brodnikovska I., Brychevskyi M., Kovalenko L., Vasylyev O., Belous A., Steinberger-Wilckens R. Properties of 10Sc1CeSZ-3.5 YSZ (33-, 40-, 50-wt.%) composite ceramics for SOFC application. Materials Today. 2019. 6: 26. https://doi.org/10.1016/j.matpr.2018.10.071

46. Polishko I., Ivanchenko S., Horda R., Brodnikovskyi Ye., Lysunenko N., Kovalenko L. Tape casted SOFC based on Ukrainian 8YSZ powder. Materials Today. 2019. 6(2): 237. https://doi.org/10.1016/j.matpr.2018.10.100

47. Pylypova O., Havryliuk O., Antonin S., Evtukh A., Skryshevsky V., Ivanov I., Shmahlii S. Influence of nanostructure geometry on light trapping in solar cells. Applied Nanoscience. 2022. 12(3): 769. https://doi.org/10.1007/s13204-021-01699-6

48. Semchuk O.Y., Biliuk A.A., Havryliuk O.O., Biliuk A.I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance. Applied Surface Science Advances. 2021. 3: 100057. https://doi.org/10.1016/j.apsadv.2021.100057

49. Havryliuk O.O., Evtukh A.A., Pylypova O.V., Semchuk O.Y., Ivanov I.I., Zabolotnyi V.F. Plasmonic enhancement of light to improve the parameters of solar cells. Applied Nanoscience. 2020. 10(12): 4759. https://doi.org/10.1007/s13204-020-01299-w

50. Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. NATO Security through Science Series A: Chemistry and Biology. 2007: 365. https://doi.org/10.1007/978-1-4020-5514-0_47

51. Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. International Journal of Hydrogen Energy. 2008. 33(13): 3330. https://doi.org/10.1016/j.ijhydene.2008.03.064

52. Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. International Journal of Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087

53. Lakhnik A.M., Kirian I.M., Rud A.D. The Mg/MAX-phase composite for hydrogen storage. International Journal of Hydrogen Energy. 2022. 47(11): 7274. https://doi.org/10.1016/j.ijhydene.2021.02.081

54. Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko, A.D., Matysina, Z.A., Veziroglu, T.N., Skryabina, N.E. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7

55. Bogolepov, V.A., Veziroglu, A., Zaginaichenko, S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. International Journal of Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011

56.  Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russian Physics Journal. 2021. 64(1): 89 https://doi.org/10.1007/s11182-021-02304-7

57. Matysina Z.A. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen сoncentration. Russian Physics Journal. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874

58. Trefilov V.I., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable energy. 1999. 16(1-4): 757. https://doi.org/10.1016/S0960-1481(98)00273-0

59. Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. International Journal of Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D

60. Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. International Journal of Hydrogen Energy. 994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5

61. Matysina Z.A., Gavrylyuk N.A., Kartel M., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko A.D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. International Journal of Hydrogen Energy. 2021. 46(50): 25520 https://doi.org/10.1016/j.ijhydene.2021.05.069

62. Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu. The surface energy of crystalline CuZn and FeAl alloys. Journal of Physics and Chemistry of Solids. 1995. 56(1): 9 https://doi.org/10.1016/0022-3697(94)00106-5

63. Rud A.D., Schmidt U., Zelinska, G.M., Lakhnik, A.M., Kolbasov G.Ya., Danilov M.O. Atomic structure and hydrogen storage properties of amorphous-quasicrystalline Zr-Cu-Ni-Al melt-spun ribbons. Journal of Non-Crystalline Solids. 2007. 353(32-40): 34344 https://doi.org/10.1016/j.jnoncrysol.2007.05.095

64. Matysina Z.A., Zaginaichenko S.Yu. Hydrogen solubility in alloys under pressure. International Journal of Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

65. Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. Journal of Alloys and Compounds. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9

66. Lytvynenko Yu.M., Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9

67. Matysina Z.A., Zaginaichenko, S.Y. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russian Physics Journal. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0

68. Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Perekos A.E., Kolbasov G.Ya., Danilov M.O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds. Journal of Alloys and Compounds. 2005. 404-406: 515 https://doi.org/10.1016/j.jallcom.2004.12.174

69. Zaginaichenko S.Y., Matysina Z.A., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. International Journal of Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088

70. Zaginaichenko S.Y., Zaritskii D.A., Matysina Z.A., Veziroglu T.N., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. International Journal of Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089

71. Matysina Z.A., Zaginaichenko S.Y. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Physics of Metals and Metallography. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079

72. Tikhotskii S.A, Fokin I.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062

73. Ilyin A.P., Mostovshchikov A.V., Root, L.O., Zmanovskiy S.V., Ismailov D.V., Ruzieva G.U. Effect of beta-radiation exposure on the parameters of aluminum micropowders activity. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019. 330(8): 87

74. Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo W., Bratus V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Applied Surface Science. 2018. 434: 142 https://doi.org/10.1016/j.apsusc.2017.10.029

75. Brodnikovska I., Brychevskyia M., Brodnikovskyi Y., Brodnikovskyi D., Vasylyev O., Smirnova A. Joint impedance spectroscopy and fractography data analysis of ceria doped scandia stabilized zirconia solid electrolyte modified by powder types and sintering temperature. French-Ukrainian Journal of Chemistry. 2018. 6(1): 128 https://doi.org/10.17721/fujcV6I1P128-141

76. Baglyuk G.A., Poznyak L.A. The sintering of powder metallurgy high-speed steel with activating additions. Powder Metallurgy and Metal Ceramics. 2002. 41(7-8): 366 https://doi.org/10.1023/A:1021113025628

77. Brodnikovsky D.N., Golovash A.V., Tkachenko S.V., Okun I.Yu., Kuz'menko N.N., Firstov S.A. Influence of rigid particles of silicide on character of deformation of alloys on the base of a titanium at the high temperatures. Metallofizika i noveishie tekhnologii. 2006. 28: 165

78. Baglyuk G.A., Poznyak L.A. Sintered wear-resistant iron-based materials. I. Materials fabricated by sintering and impregnation. Poroshkovaya Metallurgiya. 2001. (1-2): 44

79. Baglyuk G.A., Ivasyshyn O.M., Stasyuk O.O., Savvakin D.G. Sintered metals and alloys: The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds. Powder Metallurgy and Metal Ceramics. 2017. 56(1-2): 59 https://doi.org/10.1007/s11106-017-9870-z

80. Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kuz'menko N.N., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt.% Si Alloy. II. Structure and Strength of the Sintered Material. Powder Metallurgy and Metal Ceramics. 2014. 52: 539. https://doi.org/10.1007/s11106-014-9557-7

81. Abdullin K.A., Gabdullin M.T., Gritsenko L.V., Ismailov D.V., Kalkozova Z.K., Kumekov S.E., Mukash Z.O., Sazonov A.Y., Terukov E.I. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma. Semiconductors. 2016. 50(8): 1010 https://doi.org/10.1134/S1063782616080029

82. Baglyuk G.A., Sosnovskii L.A., Volfman V.I. Effect of carbon content on the properties of sintered steels doped with manganese and copper. Powder Metallurgy and Metal Ceramics. 2011. 50(3-4): 189 https://doi.org/10.1007/s11106-011-9317-x

83. Matvienko Y., Rud A., Polishchuk S., Zagorodniy Y., Rud N., Trachevski V. Effect of graphite additives on solid-state reactions in eutectic Al-Cu powder mixtures during high-energy ball milling. Applied Nanoscience. 2020. 10(8): 2803 https://doi.org/10.1007/s13204-019-01086-2

84. Baglyuk G.A., Tolochin A.I., Tolochina A.V., Yakovenko R.V., Gripachevckii A.N., Golovkova M.E. Effect of Process Conditions on the Structure and Properties of the Hot-Forged Fe3Al Intermetallic Alloy. Powder Metallurgy and Metal Ceramics. 2016. 55(5-6): 297 https://doi.org/10.1007/s11106-016-9805-0

85. Havryliuk O.O., Semchuk O.Y. Formation of periodic structures on the solid surface under laser irradiation. Ukrainian Journal of Physics. 2017. 62(1): 20 https://doi.org/10.15407/ujpe62.01.0020

86. Khomenko E.V., Baglyuk G.A., Minakova R.V. Effect of deformation processing on the properties of Cu-50% Cr composite. Powder Metallurgy and Metal Ceramics. 2009. 48(3-4): 211 https://doi.org/10.1007/s11106-009-9108-9

87. Mostovshchikov A.V., Ilyin A.P., Zabrodina I.K., Root L.O., Ismailov D.V. Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability. Key Engineering Materials. 2018. 769: 146 https://doi.org/10.4028/www.scientific.net/KEM.769.146

88. Sizonenko O.N., Baglyuk G.A., Taftai E.I., Zaichenko A.D., Lipyan E.V., Torpakov A.S., Zhdanov A.A., Pristash N.S. Dispersion and carburization of titanium powders by electric discharge. Powder Metallurgy and Metal Ceramics. 2013. 52(5-6): 247 https://doi.org/10.1007/s11106-013-9520-z

89. Baglyuk G.A., Napara-Volgina S.G., Vol'Fman V.I., Mamonova A.A., Pyatachuk S.G. Thermal synthesis of Fe-B 4C powder master alloys. Powder Metallurgy and Metal Ceramics. 2009. 48(7-8): 381 https://doi.org/10.1007/s11106-009-9156-1

90. Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. Journal of Non-Crystalline Solids. 2018. 500: 351 https://doi.org/10.1016/j.jnoncrysol.2018.08.020

91. Brodnikovska I., Khomenkova L., Korsunska N., Polishchuk Yu., Brychevskyi M., Brodnikovskyi Ye., Brodnikovskyi D., Polishko I., Vasylyev O. The investigation of 10Sc1CeSZ structure transformation and ionic conductivity. Materials Today: Proceedings. 2022. 50(1): 487. https://doi.org/10.1016/j.matpr.2021.11.299

92. Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Width of the surface plasmon resonance line in spherical metal nanoparticles. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2020. 23(3): 308 https://doi.org/10.15407/spqeo23.03.308

93. Baglyuk G.A., Terekhov V.N., Ternovoi Y.F. Structure and properties of powder austenitic die steels. Powder Metallurgy and Metal Ceramics. 2006. 45(7-8): 317 https://doi.org/10.1007/s11106-006-0083-0

94. Brodnikovska I., Korsunska N., Khomenkova L., Polishchuk Yu., Lavoryk S, Brychevskyi M., Brodnikovskyi Y., Vasylyev O. Grains, grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant content. Materials Today: Proceedings. 2019. 6(2): 79. https://doi.org/10.1016/j.matpr.2018.10.078

95. Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids and Interfaces. 2019. 3(1): 34 https://doi.org/10.3390/colloids3010034

96. Тоlochyn, О.І., Baglyuk, G.А., Tolochyna, O.V., Evych, Y.І., Podrezov, Y.M., Molchanovska, H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Materials Science. 2021. 56(4): 499 https://doi.org/10.1007/s11003-021-00456-y

97. Semchuk O.Y., Biliuk A.A., Havryliuk O.O. The Kinetic Theory of the Width of Surface Plasmon Resonance Line in Metal Nanoparticles. Springer Proceedings in Physics. 2021. 264: 3 https://doi.org/10.1016/j.apsadv.2021.100057

98. Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kulak L.D., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt.% Si alloy. I. Simulating the formation of powder particles by centrifugal atomization. Powder Metallurgy and Metal Ceramics. 2013. 52: 409 https://doi.org/10.1007/s11106-013-9541-7

99. Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 556 https://doi.org/10.15407/hftp13.02.190

100. Great Soviet Encyclopedia: in 30 volumes / Ch. ed. A. M. Prokhorov. 3rd ed. (Moscow: Sov. Encycl., 1969 - 1978).

101. Shchur D.V., Shulga Yu.M., Tarasov B.P., Zaginaichenko S.Yu. Some properties of materials produced by the electric arc sputtering of graphite-cobalt-nickel electrodes. In: Int. Conf. "Carbon Nanotubes" (April 10-11, 2000, USA, FL, Miami). P. 186.

102. Zolotarenko Ol. D., Rudakova E. P., Akhanova N. Yu., Zolotarenko An. D., Shchur D. V., Matysina Z. A., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Zolotarenko A. D., Chymbai M. V., Zagorulko I. V. Comparative Analysis of Products of the Fullerenes' and Carbon-Nanostructures' Synthesis Using the SIGE and FGDG-7 Grades of Graphite. Nanosistemi, nanomateriali, nanotehnologii. 2022. 20(3): 725 https://doi.org/10.15407/nnn.20.03.725

103. Matysinaa Z.A., Zolotarenko An.D., Zolotarenko Al.D., Kartel M.T., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Schur D.V., Gabdullin M.T., Akhanova N.E., Ramazanov T.S., Ualkhanova M., Shvachkoa N.A.. Hydrogen in magnesium alanate Mg(AlH4)2, aluminum and magnesium hydrides. International Journal of Hydrogen Energy. 2023. 48(6): 2271. https://doi.org/10.1016/j.ijhydene.2022.09.225

104. Ualkhanova M.N., Zhakypov A.S., Nemkayeva R.R., Aitzhanov M.B., Kurbanov B.Y., Akhanova N.Y., Yerlanuly Y., Orazbayev S.A., Shchur D., Zolotarenko A., Gabdullin M.T. Synthesis of Graphite-Encapsulated Ni Micro- and Nanoparticles Using Liquid-Phase Arc Discharge. Energies. 2023. 16(3):1450. https://doi.org/10.3390/en16031450

105. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 415.

106. Matysina Z.A., Zolonarenko An.D., Zolonarenko Al.D., Gavrylyuk N.A., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Gabdullin M.T. Features of the interaction of hydrogen with metals, alloys and compounds (Hydrogen atoms in crystalline solids) (Kiev: "KIM" Publishing House, 2022).

107. Zolotarenko O. D., Rudakova E. P., Akhanova N. Y., Ualkhanova M., Zolotarenko A. D., Shchur D. V., Gabdullin M. T., Gavrylyuk N. A., Myronenko T. V., Zolotarenko A. D., Chymbai M. V., Zagorulko I. V., Tarasenko Y. O., Havryliuk O. O. Synthesis of carbon nanostructures using cheap grades of graphite. Surface. 2022. 14(29): 113.

108. Zolotarenko O. D., Akhanova N. Y., Zolotarenko A. D., Shchur D. V., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Zolotarenko A. D., Chymbai M. V., Rudakova E. P., Myronenko T. V., Zagorulko I. V., Havryliuk O. O., Tarasenko Y. O. Modern methods of obtaining iron endofullerenes. Surface. 2022. 14(29): 193.

109. Zolotarenko Ol.D., Rudakova E.P., Lavrenko V.A., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Matysina Z.A., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko O.D., Chymbai M.V., Zagorulko I.V. Features of Electrochemical (Anode) Synthesis of Nickel and Copper Nanocrystalline Powder. Nanosistemi, Nanomateriali, Nanotehnologii. 2022. 20(4): 857.

110. Zolotarenko O., Rudakova E., Zagorulko I., Akhanova N., Zolotarenko A., Schur D., Gabdullin M., Ualkhanova M., Myronenko T., Zolotarenko A., Chymbai M., Dubrova O. Comparative Analysis of Products of Electric Arc Synthesis Using Graphite of Different Grades. Ukrainian Journal of Physics. 2023. 68(1): 57. https://doi.org/10.15407/ujpe68.1.57

Опубліковано
2023-12-03
Як цитувати
Золотаренко, О., Золотаренко , А., Рудакова , О., Швачко, Н., Аханова , Н., Уалханова , М., Щур , Д., Габдулін , М., Жирко, Ю., Мироненко, Т., Золотаренко , О., Чимбай, М., Гаврилюк, О., & Тарасенко, Ю. (2023). Створення 3D-продукції з використанням вуглецевих наноструктур і технологій 3D-друку (FDM, CJP, SLA, SLS). Поверхня, (15(30), 110-134. https://doi.org/10.15407/Surface.2023.15.110
Розділ
Наноматеріали і нанотехнології