Використання технології 3D друку (CJP) для створення композитних трьохмірних виробів на основі вуглецевих наноструктур

  • Ол.Д. Золотаренко Інститут хімії поверхні ім. О.О. Чуйка НАН України / Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • Ан.Д. Золотаренко Інститут хімії поверхні ім. О.О. Чуйка НАН України / Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • Н.Є. Аханова Казахстансько-Британський технічний університет (КБТУ) / Казахський національний університет ім. Аль-Фарабі
  • M. Уалханова Казахський національний університет ім. Аль-Фарабі
  • Д.В. Щур Інститут проблем матеріалознавства ім. І.М. Францевича НАН України / 5 Інститут прикладної фізики НАН України
  • M. T. Габдуллін Казахстансько-Британський технічний університет (КБТУ)
  • Т.В. Мироненко Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
  • О.Д. Золотаренко Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
  • О.П. Рудакова Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
  • М.В. Чимбай Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
  • О.А. Каменецька Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
  • О.О. Гаврилюк
  • Н.А. Швачко Інститут проблем матеріалознавстваім. І.М. Францевича НАН України / Київський національний університет будівництва і архітектури
  • Ю.І. Жирко Інститут прикладної фізики НАН України
Ключові слова: 3D друк, технологія CJP, 3D виріб, нанокомпозитні матеріали, механічна суміш, вуглецеві нановолокна, вуглецеві нанотрубки, Al2O3, кераміка, глина, піроліз

Анотація

Показані умови синтезу вуглецевих нанотрубок (ВНТ), що отримані піролітичним методом та відпрацьован метод їх використання у 3D принтері технології CJP. Описаний процес підготовки продуктів синтезу для їх використання у 3D принтерах технологіях CJP, FDM, SLA, SLS. У дослідній роботі перераховані переваги композитного матеріалу (ВНТ - Al2O3) перед вихідним керамічним матеріалом.

Також було розглянуто методику створення композитних 3D виробів із витратних механічних сумішей (ВНТ/Al2O3), де розглянуто технологію їх приготування. Виміряна міцність на вигин кераміки, створеної методом 3D друку та армованої вуглецевими нанотрубками. Досліджено стійкість до механічного руйнування композитів, отриманих при використанні спіралеподібних і прямих ВНТ, та показано, що частини виробу спіралеподібних ВНТ при руйнуванні не розсипаються, а залишаються об'єднаними навіть під навантаженням.

Отримані композитні матеріали (БВНТ - Al2O3) порівнювались у вигляді таблиці з характеристик міцності різноманітної кераміки. Встановлені показники міцності для композиту на основі Al2O3 наповненого багатостінними вуглецевими нанотрубками (БВНТ) після його
3D-друку та спікання, із вмістом ВНТ 0, 20, 30, 50 % об. А також проведене порівняння показників міцності для композитних 3D-виробів, армованих спіральними або прямими ВНТ, де вміст ВНТ досягав від 0 до 50 % об.

Усі отримані матеріали (ВНТ, Al2O3 та композит на їх основі) були досліджені методом електронної мікроскопії.

Посилання

1. Ilyin A.P., Mostovshchikov A.V., Root L.O., Zmanovskiy S.V., Ismailov D.V., Ruzieva G.U. Effect of beta-radiation exposure on the parameters of aluminum micropowders activity. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019. 330(8): 87.

2. Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo W., Bratu, V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Applied Surface Science. 2018. 434: 142. https://doi.org/10.1016/j.apsusc.2017.10.029

3. Brodnikovska I., Brychevskyia M., Brodnikovskyi Y., Brodnikovskyi D., Vasylyev O., Smirnova A. Joint impedance spectroscopy and fractography data analysis of ceria doped scandia stabilized zirconia solid electrolyte modified by powder types and sintering temperature. French-Ukrainian Journal of Chemistry. 2018. 6(1): 128. https://doi.org/10.17721/fujcV6I1P128-141

4. Baglyuk G.A., Poznyak L.A. The sintering of powder metallurgy high-speed steel with activating additions. Powder Metallurgy and Metal Ceramics. 2002. 41(7-8): 366. https://doi.org/10.1023/A:1021113025628

5. Brodnikovsky D.N., Golovash A.V., Tkachenko S.V., Okun I.Yu., Kuz'menko N.N., Firstov S.A. Influence of rigid particles of silicide on character of deformation of alloys on the base of a titanium at the high temperatures. Metallofizika i noveishie tekhnologii . 2006. 28: 165.

6. Baglyuk G.A., Poznyak L.A. Sintered wear-resistant iron-based materials. I. Materials fabricated by sintering and impregnation. Poroshkovaya Metallurgiya. 2001. 1-2: 44.

7. Semchuk O.Y., Biliuk A.A., Havryliuk O.O. The Kinetic Theory of the Width of Surface Plasmon Resonance Line in Metal Nanoparticles. Springer Proceedings in Physics. 2021. 264: 3. https://doi.org/10.1016/j.apsadv.2021.100057

8. Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kulak L.D., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt.% Si alloy. I. Simulating the formation of powder particles by centrifugal atomization. Powder Metallurgy and Metal Ceramics. 2013. 52: 409. https://doi.org/10.1007/s11106-013-9541-7

9. Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 556. https://doi.org/10.15407/hftp13.02.190

10. Baglyuk G.A., Napara-Volgina S.G., Vol'Fman V.I., Mamonova A.A., Pyatachuk S.G. Thermal synthesis of Fe-B 4C powder master alloys. Powder Metallurgy and Metal Ceramics. 2009. 48(7-8): 381. https://doi.org/10.1007/s11106-009-9156-1

11. Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. Journal of Non-Crystalline Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020

12. Brodnikovska I., Khomenkova L., Korsunska N., Polishchuk Yu., Brychevskyi M., Brodnikovskyi Ye., Brodnikovskyi D., Polishko I., Vasylyev O. The investigation of 10Sc1CeSZ structure transformation and ionic conductivity. Materials Today: Proceedings. 2022. 50(1): 487. https://doi.org/10.1016/j.matpr.2021.11.299

13. Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Width of the surface plasmon resonance line in spherical metal nanoparticles. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2020. 23(3): 308. https://doi.org/10.15407/spqeo23.03.308

14. Baglyuk G.A., Terekhov V.N., Ternovoi, Y.F. Structure and properties of powder austenitic die steels. Powder Metallurgy and Metal Ceramics. 2006. 45(7-8): 317. https://doi.org/10.1007/s11106-006-0083-0

15. Brodnikovska I., Korsunska N., Khomenkova L., Polishchuk Yu., Lavoryk S, Brychevskyi M., Brodnikovskyi Y., Vasylyev O. Grains, grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant content. Materials Today: Proceedings. 2019. 6(2): 79. https://doi.org/10.1016/j.matpr.2018.10.078

16. Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids and Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034

17. Тоlochyn О.І., Baglyuk G.А., Tolochyna O.V., Evych Y.І., Podrezov Y.M., Molchanovska H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Materials Science. 2021. 56(4): 499. https://doi.org/10.1007/s11003-021-00456-y

18. Baglyuk G.A., Ivasyshyn O.M., Stasyuk O.O., Savvakin D.G. Sintered metals and alloys: The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds. Powder Metallurgy and Metal Ceramics. 2017. 56(1-2): 59. https://doi.org/10.1007/s11106-017-9870-z

19. Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kuz'menko N.N., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt.% Si Alloy. II. Structure and Strength of the Sintered Material. Powder Metallurgy and Metal Ceramics. 2014. 52: - P. 539. https://doi.org/10.1007/s11106-014-9557-7

20. Abdullin K.A., Gabdullin M.T., Gritsenko L.V., Ismailov D.V., Kalkozova Z.K., Kumekov S.E., Mukash Z.O., Sazonov A.Y., Terukov E.I. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma. Semiconductors. 2016. 50(8): 1010. https://doi.org/10.1134/S1063782616080029

21. Baglyuk G.A., Sosnovskii L.A., Volfman V.I. Effect of carbon content on the properties of sintered steels doped with manganese and copper. Powder Metallurgy and Metal Ceramics. 2011. 50(3-4): 189. https://doi.org/10.1007/s11106-011-9317-x

22. Matvienko Y., Rud A., Polishchuk S., Zagorodniy Y., Rud N., Trachevski V. Effect of graphite additives on solid-state reactions in eutectic Al-Cu powder mixtures during high-energy ball milling. Applied Nanoscience. 2020. 10(8): 2803. https://doi.org/10.1007/s13204-019-01086-2

23. Baglyuk G.A., Tolochin A.I., Tolochina A.V., Yakovenko R.V., Gripachevckii A.N., Golovkova M.E. Effect of Process Conditions on the Structure and Properties of the Hot-Forged Fe3Al Intermetallic Alloy. Powder Metallurgy and Metal Ceramics. 2016. 55(5-6): 297. https://doi.org/10.1007/s11106-016-9805-0

24. Havryliuk O.O., Semchuk O.Y. Formation of periodic structures on the solid surface under laser irradiation. Ukrainian Journal of Physics. 2017. 62(1): 20. https://doi.org/10.15407/ujpe62.01.0020

25. Khomenko E.V., Baglyuk G.A., Minakova R.V. Effect of deformation processing on the properties of Cu-50% Cr composite. Powder Metallurgy and Metal Ceramics. 2009. 48(3-4): 211. https://doi.org/10.1007/s11106-009-9108-9

26. Mostovshchikov A.V., Ilyin A.P., Zabrodina I.K., Root L.O., Ismailov D.V. Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability. Key Engineering Materials. 2018. 769: 146. https://doi.org/10.4028/www.scientific.net/KEM.769.146

27. Sizonenko O.N., Baglyuk G.A., Taftai E.I., Zaichenko A.D., Lipyan E.V., Torpakov A.S., Zhdanov A.A., Pristash N.S. Dispersion and carburization of titanium powders by electric discharge. Powder Metallurgy and Metal Ceramics. 2013. 52(5-6): 247. https://doi.org/10.1007/s11106-013-9520-z

28. Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. PartF2: 53.

29. Zolotarenko Ol.D., Rudakova O.P., Akhanova N.E., Zolotarenko An.D., Shchur D.V., Matysina Z.A., Gabdullin M.T., Ualkhanova M., Gavrilyuk N.A., Zolotarenko O.D., Chimbai M.V., Zahorulko I.V. Comparative analysis of synthesis products of fullerenes and carbon nanostructures using EGSP and MPG-7 graphite. Nanosystems, nanomaterials, nanotechnologies. 2022. 20(3): 725.

30. Gun'ko V.M., Turov V.V., Zarko V.I., Prykhod'Ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chemical Physics. 2015. 459: 172. https://doi.org/10.1016/j.chemphys.2015.08.016

31. Nishchenko M.M., Likhtorovich S.P., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4

32. Lad'yanov V.I., Nikonova R.M., Larionova N.S., Aksenova V.V., Mukhgalin V.V., Rud' A.D. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation. Physics of the Solid State. 2013. 55(6): 1319. https://doi.org/10.1134/S1063783413060206

33. Kartel M.T., Voitko K.V., Grebelna Y.V., Zhuravskyi S.V., Ivanenko K.O., Kulyk T.V., Makhno S.M., Sementsov Y.I. Changes in the structure and properties of graphene oxide surfaces during reduction and modification. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 179. https://doi.org/10.15407/hftp13.02.179

34. Rud A.D., Kiryan I.M. Quantitative analysis of the local atomic structure in disordered carbon. Journal of Non-Crystalline Solids. 2014. 386: 1. https://doi.org/10.1016/j.jnoncrysol.2013.11.010

35. Sementsov Yu.I., Cherniuk O.А., Zhuravskyi S.V., Bo W., Voitko K.V., Bakalinska O.M., Kartel M.T. Synthesis and catalytic properties of nitrogen-containing carbon nanotubes. Himia, Fizika ta Tehnologia Poverhni. 2021. 12(2): 135. https://doi.org/10.15407/hftp12.02.135

36. Barany S., Kartel' N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid Journal. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020

37. Matysina Z.A., Zolotarenko Ol.D., Rudakova O.P., Akhanova N.Y., Pomytkin A.P., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A. D., Chymbai M.V., Zagorulko I.V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. - V. 23, No 3. - P. 510-527.

38. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology. 2007: 199. https://doi.org/10.1007/978-1-4020-5514-0_25

39. Zaginaichenko S.Y., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9

40. Boguslavskii L.Z., Rud' A.D., Kir'yan I.M., Nazarova N.S., Vinnichenko D.V. Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surface Engineering and Applied Electrochemistry. 2015. 51(2): 105. https://doi.org/10.3103/S1068375515020027

41. Matysina Z.A., Zolotarenko Ol.D., Ualkhanova M., Rudakova O. P., Akhanova N. Y., Zolotarenko An. D., Shchur D. V., Gabdullin M. T., Gavrylyuk N. A., Zolotarenko O. D., Chymbai M. V., Zagorulko I. V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.

42. Yakymchuk O.M., Perepelytsina O.M., Rud A.D., Kirian I.M., Sydorenko M.V. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. Physica Status Solidi (A) Applications and Materials Science. 2014. 211(12): 2778. https://doi.org/10.1002/pssa.201431358

43. Kartel N.T., Gerasimenko N.V., Tsyba N.N., Nikolaichuk A.D., Kovtun G.A. Synthesis and study of carbon sorbent prepared from polyethylene terephthalate. Russian Journal of Applied Chemistry. 2001. 74(10): 1765. https://doi.org/10.1023/A:1014894211046

44. Zolotarenko Ol. D., Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An. D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 209. [in Ukrainian]

45. Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanov Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., Rud' A.D. Phase transformations of carbon under extreme energy action. Technical Physics. 2012. 57(2): 198. https://doi.org/10.1134/S106378421202017X

46. Rud A.D., Lakhnik A.M., Mikhailova S.S., Karban O.V., Surnin D.V., Gilmutdinov F.Z. Structure of Mg-C nanocomposites produced by mechano-chemical synthesis. Journal of Alloys and Compounds. 2011. 509(SUPPL. 2): S592. https://doi.org/10.1016/j.jallcom.2010.10.155

47. Ushakova L.M., Ivanenko K.I., Sigareva N.V., Terets M.І., Kartel M.Т., Sementsov Yu.І. Influence of nanofiller on the structure and properties of macromolecular compounds. Physics and Chemistry of Solid State. 2022. 23(2): 394. https://doi.org/10.15330/pcss.23.2.394-400

48. Sementsov Y., Prikhod'ko G., Kartel M., Tsebrenko M., Aleksyeyeva T., Ulyanchychi N. Carbon nanotubes filled composite materials. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 183. https://doi.org/10.1007/978-94-007-0899-0_16

49. Harea E., Stoček R., Storozhuk L., Sementsov Y., Kartel N. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Applied Nanoscience. 2019. 9(5): 899. https://doi.org/10.1007/s13204-018-0797-6

50. Gun'ko V.M., Turov V.V., Protsak I., Krupska T.V., Pakhlov E.M., Zhang D. Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloids and Interface Science Communications. 2020. 35: 100251. https://doi.org/10.1016/j.colcom.2020.100251

51. Stavitskaya S.S., Mironyuk T.I., Kartel' N.T., Strelko V.V. Sorption characteristics of "food fibers" in secondary products of processing of vegetable raw materials. Russian Journal of Applied Chemistry. 2001. 74(4): 592. https://doi.org/10.1023/A:1012706531317

52. Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chemical Physics Letters. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039

53. Zakutevskii O.I., Psareva T.S., Strelko V.V., Kartel' N.T. Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry. 2007. 49(1): 67. https://doi.org/10.1134/S1066362207010110

54. Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Materials. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409

55. Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova. 2017. 12(1): 37. https://doi.org/10.19261/cjm.2017.401

56. Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019. 570: 471. https://doi.org/10.1016/j.colsurfa.2019.03.056

57. Galysh V., Sevastyanova O., Кartel M., Lindström M.E., Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. Journal of Thermal Analysis and Calorimetry. 2017. 128(2): 1019. https://doi.org/10.1007/s10973-016-5984-7

58. Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.V., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. Journal of Colloid and Interface Science. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065

59. Gabdullin M.T., Khamitova K.K., Ismailov D.V., Sultangazina M.N., Kerimbekov D.S., Yegemova S.S., Chernoshtan A., Schur D.V. Use of nanostructured materials for the sorption of heavy metals ions. IOP Conference Series: Materials Science and Engineering. 2019. 511(1): 12044. https://doi.org/10.1088/1757-899X/511/1/012044

60. Sementsov Yu.I., Prikhod'Ko G.P., Melezhik A.V., Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. 2010: 347. https://doi.org/10.1007/978-90-481-2309-4_27

61. Gun'ko V.M., Lupascu T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084

62. Khamitova K.K., Kayupov B.A., Yegemova S.S., Gabdullin M.T., Abdullin Kh.A., Ismailov D.V., Kerimbekov D.S. The use of fullerenes as a biologically active molecule. International Journal of Nanotechnology. 2019. 16(1-3): 100. https://doi.org/10.1504/IJNT.2019.102396

63. Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chemical Physics. 2017. 483-484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007

64. Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. Journal of Colloid and Interface Science. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102

65. Krupska T.V., Turova A.A., Un'Ko V.M., Turov V.V. Influence of highly dispersed materials on physiological activity of yeast cells. Biopolymers and Cell. 2009. 25(4): 290. https://doi.org/10.7124/bc.0007E8

66. Pylypova O., Havryliuk O., Antonin S., Evtukh A., Skryshevsky V., Ivanov I., Shmahlii S. Influence of nanostructure geometry on light trapping in solar cells. Applied Nanoscience. 2022. 12(3): 769. https://doi.org/10.1007/s13204-021-01699-6

67. Semchuk O.Y., Biliuk A.A., Havryliuk O.O., Biliuk A.I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance. Applied Surface Science Advances. 2021. 3: 100057. https://doi.org/10.1016/j.apsadv.2021.100057

68. Havryliuk O.O., Evtukh A.A., Pylypova O.V., Semchuk O.Y., Ivanov I.I., Zabolotnyi V.F. Plasmonic enhancement of light to improve the parameters of solar cells. Applied Nanoscience. 2020. 10(12): 4759. https://doi.org/10.1007/s13204-020-01299-w

69. Tkachenko S., Brodnikovskyi D., Cizek J. Komarov P., Brodnikovskyi Ye., Tymoshenko Ya., Csaki S., Pinchuk M., Vasylyev O., Čelko L., Gadzyra M., Chraska T. Novel Ti-Si-C composites for SOFC interconnect materials: Produc-tion optimization. Ceramics International. 2022. 48(19(A)): 27785. https://doi.org/10.1016/j.ceramint.2022.06.081

70. Podhurska V., Brodnikovskyi D., Vasyliv B., Gadzyra M., Tkachenko S., Čelko L., Ostash O., Brodnikovska I., Brodnikovskyi Ye., Vasylyev O. Ti-Si-C in-situ composite as a potencial material for lightweight SOFC interconnects. Promising materials and processes in applied electrochemistry ( Kyiv: KNUTD, 2020).

71. Brodnikovskyi Y., McDonald N., Polishko I., Brodnikovskyi D., Brodnikovska I., Brychevskyi M., Kovalenko L., Vasylyev O., Belous A., Steinberger-Wilckens R. Properties of 10Sc1CeSZ-3.5 YSZ (33-, 40-, 50-wt.%) composite ceramics for SOFC application. Materials Today: Proceedings. 2019. 6: 26. https://doi.org/10.1016/j.matpr.2018.10.071

72. Polishko I., Ivanchenko S., Horda R., Brodnikovskyi Ye., Lysunenko N., Kovalenko L. Tape casted SOFC based on Ukrainian 8YSZ powder. Materials Today: Proceedings. 2019. 6(2): 237. https://doi.org/10.1016/j.matpr.2018.10.100

73. Bogolepov V.A., Veziroglu A., Zaginaichenko S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. International Journal of Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011

74. Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russian Physics Journal. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7

75. Matysina Z.A. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen сoncentration. Russian Physics Journal. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874

76. Trefilov V.I., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable energy. 1999. 16(1-4): 757. https://doi.org/10.1016/S0960-1481(98)00273-0

77. Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. International Journal of Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D

78. Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. International Journal of Hydrogen Energy. 1994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5

79. Matysina Z.A., Gavrylyuk N.A., Kartel M., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko A.D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. International Journal of Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069

80. Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu. The surface energy of crystalline CuZn and FeAl alloys. Journal of Physics and Chemistry of Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5

81. Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Kolbasov G.Ya., Danilov M.O. Atomic structure and hydrogen storage properties of amorphous-quasicrystalline Zr-Cu-Ni-Al melt-spun ribbons. Journal of Non-Crystalline Solids. 2007. 353(32-40): 3434. https://doi.org/10.1016/j.jnoncrysol.2007.05.095

82. Matysina Z.A., Zaginaichenko S.Yu. Hydrogen solubility in alloys under pressure. International Journal of Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

83. Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. Journal of Alloys and Compounds. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9

84. Lytvynenko Yu.M. Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9

85. Matysina Z.A., Zaginaichenko S.Y. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russian Physics Journal. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0

86. Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Perekos A.E., Kolbasov G.Ya., Danilov M.O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds. Journal of Alloys and Compounds. 2005. 404-406 (SPEC. ISS): 515. https://doi.org/10.1016/j.jallcom.2004.12.174

87. Zaginaichenko S.Y., Matysina Z.A., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. International Journal of Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088

88. Zaginaichenko S.Y., Zaritskii D.A., Matysina Z.A., Veziroglu T.N., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. International Journal of Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089

89. Matysina Z.A., Zaginaichenko S.Y. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Physics of Metals and Metallography. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079

90. Tikhotskii S.A., Fokin I.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062

91. Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. NATO Security through Science Series A: Chemistry and Biology. 2007: 365. https://doi.org/10.1007/978-1-4020-5514-0_47

92. Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. International Journal of Hydrogen Energy. 2008. 33(13): 3330. https://doi.org/10.1016/j.ijhydene.2008.03.064

93. Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. International Journal of Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087

94. Lakhnik A.M., Kirian I.M., Rud A.D. The Mg/MAX-phase composite for hydrogen storage. International Journal of Hydrogen Energy. 2022. 47(11): 7274. https://doi.org/10.1016/j.ijhydene.2021.02.081

95. Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7

96. Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(3): 259. [in Ukrainian]

97. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina М., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofiz. NoveishieTekhnol. 2022. 44(3): 343.

98. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 415.

99. Zolotarenko Ol. D., Rudakova E. P., Akhanova N. Y., Zolotarenko An. D., Shchur D. V., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Chymbai M. V., Tarasenko Yu. O., Zagorulko I. V., Zolotarenko A. D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofiz. Noveishie Tekhnol. 2021. 43(10): 1417. [in Ukrainian].

100. Jang Y-T. A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sensors and Actuators B: Chemical. 2004. 99(1): 118. https://doi.org/10.1016/j.snb.2003.11.004

101. Zolotarenko Ol.D., Zolotarenko An.D., Rudakova E. P., Akhanova N. Y., Ualkhanova M., Schur D.V., Gabdullin M.T., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Features of the synthesis of straight and spiral carbon nanotubes by the pyrolytic method. Himia, Fizika ta Tehnologia Poverhni. 2023. 14(2): 191.

102. Porozova S.E., Sirotenko L.D., Shokov V.O., Gurov A.A. Interaction of Copper Oxide with Zirconium Dioxide Stabilized with Yttrium Oxide. Refractories and Industrial Ceramics. 2016. 57(3): 321. https://doi.org/10.1007/s11148-016-9977-7

103. Ando K., Kim B.-S., Chu M.-C., Saitou S., Sato S. Crack-healing behavior of Al2O3SiC composite ceramics and the bending strength of crack-healed body. Key Engineering Materials. 2003. 247: 175. https://doi.org/10.4028/www.scientific.net/KEM.247.175

104. Mittal D., Hostaša J., Silvestroni L., Esposito L., Mohan A., Kumar R., Sharma S.K. Tribological behaviour of transparent ceramics: A review. Journal of the European Ceramic Society. 2022. 42(14): 6303. https://doi.org/10.1016/j.jeurceramsoc.2022.06.080

105. Matysina Z.A., Zolotarenko An.D., Zolotarenko Ol.D., Myronenko T.V., Schur D.V., Rudakova E.P., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Havryliuk O.O. Embedded atoms in a crystalline hexagonal structure. Himia, Fizika ta Tehnologia Poverhni. 2023. 14(2): 210.

Опубліковано
2023-12-03
Як цитувати
Золотаренко , О., Золотаренко, А., Аханова, Н., УалхановаM., Щур, Д., Габдуллін M. T., Мироненко, Т., Золотаренко , О., Рудакова , О., Чимбай , М., Каменецька, О., Гаврилюк, О., Швачко, Н., & Жирко, Ю. (2023). Використання технології 3D друку (CJP) для створення композитних трьохмірних виробів на основі вуглецевих наноструктур . Поверхня, (15(30), 146-174. https://doi.org/10.15407/Surface.2023.15.146
Розділ
Наноматеріали і нанотехнології