Порошки кристалічного дигідрофосфату калію (KDP)

  • Ан.Д. Золотаренко Інститут проблем матеріалознавстваім. І.М. Францевича НАН України / Інститут хімії поверхні ім. О.О. Чуйка НАН України
  • Ол.Д. Золотаренко Інститут проблем матеріалознавстваім. І.М. Францевича НАН України / Інститут хімії поверхні ім. О.О. Чуйка НАН України
  • З.А. Матисіна Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • Н.Є. Аханова Казахстансько-Британський технічний університет (КБТУ) / Казахський національний університет ім. Аль-Фарабі
  • М. Уалханова Казахський національний університет ім. Аль-Фарабі
  • Д.В. Щур Інститут проблем матеріалознавстваім. І.М. Францевича НАН України / 2Інститут хімії поверхні ім. О.О. Чуйка НАН України, вул. Генерала Наумова
  • М.Т. Габдуллін Казахстансько-Британський технічний університет (КБТУ)
  • О.Д. Золотаренко Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • О.П. Рудакова Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • М.В. Чимбай Інститут проблем матеріалознавстваім. І.М. Францевича НАН України
  • Ю.О. Тарасенко Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • О.О. Гаврилюк Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України
  • Н.А. Швачко Інститут проблем матеріалознавства ім. І.М. Францевича НАН України / Київський національний університет будівництва і архітектури
  • Ю.І. Жирко Інститут прикладної фізики НАН України
Ключові слова: KDP-кристали, термодинамічна теорія, фероелектрики, поглинаючі воднь, молекулярно-кінетичні уявлення, порядок, закон Кюрі-Вейса

Анотація

Розглядається використання кристалів фероелектрика KDP (фосфати та арсенати калію, рубідію, цезію) та їх дейтерованих аналогів у різних галузях, у тому числі у створенні електрооптичних пристроїв та як поглинаючих водень. Описуються фізичні властивості KDP - кристалів, зміна їхніх властивостей поблизу температури фазового переходу, а також методи одержання нанокристалів KDP та їх застосування в біомедицині.

Також у роботі вказано: фазовий перехід у кристалах KDP, що відбувається близько кімнатної температури і виявляється у зміні їх фізичних властивостей, таких як діелектрична проникність, оптичні властивості та теплоємність. Крім того, наближення до температури фазового переходу викликає зміну параметрів гратки кристала, що може привести до появи аномальних ефектів.

Розглянута структура елементарної комірки дигідрофосфату калію (KH2PO4). Побудовані графіки температурної залежності параметру порядку спонтанної поляризації та графіки температурної залежності конфігураційної теплоємності кристала в області фазового переходу та побудовані графіки температурної залежності зворотної та прямої діелектричної сприйнятливості. А також побудовані графіки параметру порядку, що характеризує ступінь спонтанної поляризації для різних температур, залежно від напруженості зовнішнього електричного поля.

Посилання

1. Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. PartF2: 53-65.

2. Zolotarenko Ol. D., Rudakova E. P., Akhanova N. Yu., Zolotarenko An. D., Shchur D. V., Matysina Z. A., Gabdullin M. T., Ualkhanova M., Gavrylyuk N. A., Zolotarenko A. D., Chymbai M. V., Zagorulko I. V. Comparative Analysis of Products of the Fullerenes' and Carbon-Nanostructures' Synthesis Using the SIGE and FGDG-7 Grades of Graphite. Nanosistemi, nanomateriali, nanotehnologii. 2022. 20(3): 725. https://doi.org/10.15407/nnn.20.03.725

3. Gun'ko V.M., Turov V.V., Zarko V.I., Prykhod'Ko G.P., Krupska T.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chemical Physics. 2015. 459: 172-185. https://doi.org/10.1016/j.chemphys.2015.08.016

4. Nishchenko M.M., Likhtorovich S.P., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4

5. Lad'yanov V.I., Nikonov, R.M., Larionova N.S., Aksenova V.V., Mukhgalin V.V., Rud' A.D. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation. Physics of the Solid State. 2013. 55(6): 1319. https://doi.org/10.1134/S1063783413060206

6. Matysina Z.A., Zolotarenko Ol.D., Rudakova O.P., Akhanova N.Y., Pomytkin A.P., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. 23(3): 510.

7. Kartel M.T., Voitko K.V., Grebelna Y.V., Zhuravskyi S.V., Ivanenko K.O., Kulyk T.V., Makhno S.M., Sementsov Y.I. Changes in the structure and properties of graphene oxide surfaces during reduction and modification. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 179. https://doi.org/10.15407/hftp13.02.179

8. Rud A.D., Kiryan I.M. Quantitative analysis of the local atomic structure in disordered carbon. Journal of Non-Crystalline Solids. 2014. 386: 1. https://doi.org/10.1016/j.jnoncrysol.2013.11.010

9. Sementsov Yu.I., Cherniuk O.А., Zhuravskyi S.V., Bo W., Voitko K.V., Bakalinska O.M., Kartel, M.T. Synthesis and catalytic properties of nitrogen-containing carbon nanotubes. Himia, Fizika ta Tehnologia Poverhni. 2021. 12(2): 135. https://doi.org/10.15407/hftp12.02.135

10. Barany S., Kartel' N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid Journal. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020

11. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology. 2007: 199. https://doi.org/10.1007/978-1-4020-5514-0_25

12. Zaginaichenko S.Y., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9

13. Boguslavskii L.Z., Rud' A.D., Kir'yan I.M., Nazarova N.S., Vinnichenko D.V. Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surface Engineering and Applied Electrochemistry. 2015. 51(2): 105. https://doi.org/10.3103/S1068375515020027

14. Matysina Z.A., Zolotarenko Ol.D., Ualkhanova M., Rudakova O.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko O.D., Chymbai M.V., Zagorulko I.V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.

15. Yakymchuk O.M., Perepelytsina O.M., Rud A.D., Kirian I.M., Sydorenko M.V. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. Physica Status Solidi (A) Applications and Materials Science. 2014. 211(12): 2778. https://doi.org/10.1002/pssa.201431358

16. Kartel N.T., Gerasimenko N.V., Tsyba N.N., Nikolaichuk A.D., Kovtun G.A. Synthesis and study of carbon sorbent prepared from polyethylene terephthalate. Russian Journal of Applied Chemistry. 2001. 74(10): 1765. https://doi.org/10.1023/A:1014894211046

17. Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantages and disadvantages of electric arc methods for the synthesis of carbon nanostructures. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 209. [in Ukrainian]

18. Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanov Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., Rud' A.D. Phase transformations of carbon under extreme energy action. Technical Physics. 2012. 57(2): 198. https://doi.org/10.1134/S106378421202017X

19. Rud A.D., Lakhnik A.M., Mikhailova S.S., Karban O.V., Surnin D.V., Gilmutdinov F.Z. Structure of Mg-C nanocomposites produced by mechano-chemical synthesis. Journal of Alloys and Compounds. 2011. 509(SUPPL. 2): S592. https://doi.org/10.1016/j.jallcom.2010.10.155

20. Ushakova L.M., Ivanenko K.I., Sigareva N.V., Terets M.І., Kartel M.Т., Sementsov Yu.І. Influence of nanofiller on the structure and properties of macromolecular compounds. Physics and Chemistry of Solid State. 2022. 23(2): 394. https://doi.org/10.15330/pcss.23.2.394-400

21. Sementsov Y., Prikhod'ko G., Kartel M., Tsebrenko M., Aleksyeyeva T., Ulyanchychi N. Carbon nanotubes filled composite materials. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 183. https://doi.org/10.1007/978-94-007-0899-0_16

22. Harea E., Stoček R., Storozhuk L., Sementsov Y., Kartel N. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Applied Nanoscience. 2019. 9(5): 899. https://doi.org/10.1007/s13204-018-0797-6

23. Gun'ko V.M., Turov V.V., Protsak I., Krupska T.V., Pakhlov E.M., Zhang D. Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloids and Interface Science Communications. 2020. 35:100251. https://doi.org/10.1016/j.colcom.2020.100251

24. Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(3): 259. [in Ukrainian]

25. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina М., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallofiz. NoveishieTekhnol. 2022. 44(3): 343.

26. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(4): 415.

27. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Tarasenko Yu. O., Zagorulko I.V., Zolotarenko A.D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallofiz. Noveishie Tekhnol. 2021. 43(10): 1417. [in Ukrainian]

28. Fawzeia K. Biomedical application of KDP nano crystals. In: NCRTMSA (April, 2023, Tripoli, Libya). Р.4.

29. Sementsov Yu.I., Prikhod'Ko G.P., Melezhik A.V., Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications. 2010: 347. https://doi.org/10.1007/978-90-481-2309-4_27

30. Gun'ko V.M., Lupascu, T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084

31. Khamitova K.K., Kayupov B.A., Yegemova S.S., Gabdullin M.T., Abdullin Kh.A., Ismailov D.V., Kerimbekov D.S. The use of fullerenes as a biologically active molecule. International Journal of Nanotechnology. 2019. 16(1-3):100. https://doi.org/10.1504/IJNT.2019.102396

32. Gun'ko V.M., Turov V.V., Krupska T.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chemical Physics. 2017. 483-484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007

33. Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. Journal of Colloid and Interface Science. 2019. 541: 213-225. https://doi.org/10.1016/j.jcis.2019.01.102

34. Krupska T.V., Turova A.A., Un'Ko V.M., Turov V.V. Influence of highly dispersed materials on physiological activity of yeast cells. Biopolymers and Cell. 2009. 25(4): 290. https://doi.org/10.7124/bc.0007E8

35. Stavitskaya S.S., Mironyuk T.I., Kartel' N.T., Strelko V.V. Sorption characteristics of "food fibers" in secondary products of processing of vegetable raw materials. Russian Journal of Applied Chemistry. 2001. 74(4): 592. https://doi.org/10.1023/A:1012706531317

36. Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chemical Physics Letters. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039

37. Zakutevskii O.I., Psareva T.S., Strelko V.V., Kartel' N.T. Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry. 2007. 49(1): 67. https://doi.org/10.1134/S1066362207010110

38. Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Materials. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409

39. Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova. 2017. 12(1): 37. https://doi.org/10.19261/cjm.2017.401

40. Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019. 570: 47. https://doi.org/10.1016/j.colsurfa.2019.03.056

41. Galysh V., Sevastyanova O., Кartel M., Lindström M.E., Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. Journal of Thermal Analysis and Calorimetry. 2017. 128(2):1019. https://doi.org/10.1007/s10973-016-5984-7

42. Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.V., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. Journal of Colloid and Interface Science. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065

43. Gabdullin M.T., Khamitova K.K., Ismailov D.V., Sultangazina M.N., Kerimbekov D.S., Yegemova S.S., Chernoshtan A., Schur D.V. Use of nanostructured materials for the sorption of heavy metals ions. IOP Conference Series: Materials Science and Engineering. 2019. 511(1): 12044. https://doi.org/10.1088/1757-899X/511/1/012044

44. Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. NATO Security through Science Series A: Chemistry and Biology. 2007: 365. https://doi.org/10.1007/978-1-4020-5514-0_47

45. Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. International Journal of Hydrogen Energy. 2008. 33(13): 3330 . https://doi.org/10.1016/j.ijhydene.2008.03.064

46. Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. International Journal of Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087

47. Lakhnik A.M., Kirian I.M., Rud A.D. The Mg/MAX-phase composite for hydrogen storage. International Journal of Hydrogen Energy. 2022. 47(11): 7274. https://doi.org/10.1016/j.ijhydene.2021.02.081

48. Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko, A.D., Matysina, Z.A., Veziroglu, T.N., Skryabina, N.E. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7

49. Bogolepov, V.A., Veziroglu, A., Zaginaichenko, S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. International Journal of Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011

50. Shchur D.V., Zaginaichenko S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russian Physics Journal. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7

51. Matysina Z.A. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen сoncentration. Russian Physics Journal. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874

52. Trefilov V.I., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable energy. 1999. 16(1-4): 757. https://doi.org/10.1016/S0960-1481(98)00273-0

53. Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. International Journal of Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D

54. Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. International Journal of Hydrogen Energy. 994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5

55. Matysina Z.A., Gavrylyuk N.A., Kartel M., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko A.D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. International Journal of Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069

56. Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu. The surface energy of crystalline CuZn and FeAl alloys. Journal of Physics and Chemistry of Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5

57. Rud A.D., Schmidt U., Zelinska, G.M., Lakhnik, A.M., Kolbasov G.Ya., Danilov M.O. Atomic structure and hydrogen storage properties of amorphous-quasicrystalline Zr-Cu-Ni-Al melt-spun ribbons. Journal of Non-Crystalline Solids. 2007. 353(32-40): 3434. https://doi.org/10.1016/j.jnoncrysol.2007.05.095

58. Matysina Z.A., Zaginaichenko S.Yu. Hydrogen solubility in alloys under pressure. International Journal of Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

59. Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. Journal of Alloys and Compounds. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9

60. Lytvynenko Yu.M., Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9

61. Matysina Z.A., Zaginaichenko, S.Y. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russian Physics Journal. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0

62. Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Perekos A.E., Kolbasov G.Ya., Danilov M.O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds. Journal of Alloys and Compounds. 2005. 404-406: 515. https://doi.org/10.1016/j.jallcom.2004.12.174

63. Zaginaichenko S.Y., Matysina Z.A., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. International Journal of Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088

64. Zaginaichenko S.Y., Zaritskii D.A., Matysina Z.A., Veziroglu T.N., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. International Journal of Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089

65. Matysina Z.A., Zaginaichenko S.Y. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Physics of Metals and Metallography. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079

66. Tikhotskii S.A, Fokin I.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya. Physics of the Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062

67. Pylypova O., Havryliuk O., Antonin S., Evtukh A., Skryshevsky V., Ivanov I., Shmahlii S. Influence of nanostructure geometry on light trapping in solar cells. Applied Nanoscience. 2022. 12(3): 769. https://doi.org/10.1007/s13204-021-01699-6

68. Semchuk O.Y., Biliuk A.A., Havryliuk O.O., Biliuk A.I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance. Applied Surface Science Advances. 2021. 3: 100057. https://doi.org/10.1016/j.apsadv.2021.100057

69. Havryliuk O.O., Evtukh A.A., Pylypova O.V., Semchuk O.Y., Ivanov I.I., Zabolotnyi V.F. Plasmonic enhancement of light to improve the parameters of solar cells. Applied Nanoscience. 2020. 10(12): 4759. https://doi.org/10.1007/s13204-020-01299-w

70. Tkachenko S., Brodnikovskyi D., Cizek J. Komarov P., Brodnikovskyi Ye., Tymoshenko Ya., Csaki S., Pinchuk M., Vasylyev O., Čelko L., Gadzyra M., Chraska T. Novel Ti-Si-C composites for SOFC interconnect materials: Production optimization. Ceramics International. 2022. 48(19(A)): 27785. https://doi.org/10.1016/j.ceramint.2022.06.081

71. Podhurska V., Brodnikovskyi D., Vasyliv B., Gadzyra M., Tkachenko S., Čelko L., Ostash O., Brodnikovska I., Brodnikovskyi Ye., Vasylyev O. Ti-Si-C in-situ composite as a potencial material for lightweight SOFC interconnects. Promising materials and processes in applied electrochemistry (Kyiv : KNUTD, 2020).

72. Brodnikovskyi Y., McDonald N., Polishko I., Brodnikovskyi D., Brodnikovska I., Brychevskyi M., Kovalenko L., Vasylyev O., Belous A., Steinberger-Wilckens R. Properties of 10Sc1CeSZ-3.5 YSZ (33-, 40-, 50-wt.%) composite ceramics for SOFC application. Materials Today. 2019. 6: 26. https://doi.org/10.1016/j.matpr.2018.10.071

 73. Polishko I., Ivanchenko S., Horda R., Brodnikovskyi Ye., Lysunenko N., Kovalenko L. Tape casted SOFC based on Ukrainian 8YSZ powder. Materials Today. 2019. 6(2): 237 https://doi.org/10.1016/j.matpr.2018.10.100

74. Ilyin A.P., Mostovshchikov A.V., Root, L.O., Zmanovskiy S.V., Ismailov D.V., Ruzieva G.U. Effect of beta-radiation exposure on the parameters of aluminum micropowders activity. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019. 330(8): 87.

75. Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo W., Bratus V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Applied Surface Science. 2018. 434: 142. https://doi.org/10.1016/j.apsusc.2017.10.029

76. Brodnikovska I., Brychevskyia M., Brodnikovskyi Y., Brodnikovskyi D., Vasylyev O., Smirnova A. Joint impedance spectroscopy and fractography data analysis of ceria doped scandia stabilized zirconia solid electrolyte modified by powder types and sintering temperature. French-Ukrainian Journal of Chemistry. 2018. 6(1): 128. https://doi.org/10.17721/fujcV6I1P128-141

77. Baglyuk G.A., Poznyak L.A. The sintering of powder metallurgy high-speed steel with activating additions. Powder Metallurgy and Metal Ceramics. 2002. 41(7-8): 366. https://doi.org/10.1023/A:1021113025628

78. Brodnikovsky D.N., Golovash A.V., Tkachenko S.V., Okun I.Yu., Kuz'menko N.N., Firstov S.A. Influence of rigid particles of silicide on character of deformation of alloys on the base of a titanium at the high temperatures. Metallofizika i noveishie tekhnologii. 2006. 28: 165.

79. Baglyuk G.A., Poznyak L.A. Sintered wear-resistant iron-based materials. I. Materials fabricated by sintering and impregnation. Poroshkovaya Metallurgiya. 2001. (1-2): 44.

80. Baglyuk G.A., Ivasyshyn O.M., Stasyuk O.O., Savvakin D.G. Sintered metals and alloys: The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds. Powder Metallurgy and Metal Ceramics. 2017. 56(1-2): 59. https://doi.org/10.1007/s11106-017-9870-z

81. Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kuz'menko N.N., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt.% Si Alloy. II. Structure and Strength of the Sintered Material. Powder Metallurgy and Metal Ceramics. 2014. 52: 539. https://doi.org/10.1007/s11106-014-9557-7

82. Abdullin K.A., Gabdullin M.T., Gritsenko L.V., Ismailov D.V., Kalkozova Z.K., Kumekov S.E., Mukash Z.O., Sazonov A.Y., Terukov E.I. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma. Semiconductors. 2016. 50(8): 1010. https://doi.org/10.1134/S1063782616080029

83. Baglyuk G.A., Sosnovskii L.A., Volfman V.I. Effect of carbon content on the properties of sintered steels doped with manganese and copper. Powder Metallurgy and Metal Ceramics. 2011. 50(3-4): 189. https://doi.org/10.1007/s11106-011-9317-x

84. Matvienko Y., Rud A., Polishchuk S., Zagorodniy Y., Rud N., Trachevski V. Effect of graphite additives on solid-state reactions in eutectic Al-Cu powder mixtures during high-energy ball milling. Applied Nanoscience. 2020. 10(8): 2803. https://doi.org/10.1007/s13204-019-01086-2

85. Baglyuk G.A., Tolochin A.I., Tolochina A.V., Yakovenko R.V., Gripachevckii A.N., Golovkova M.E. Effect of Process Conditions on the Structure and Properties of the Hot-Forged Fe3Al Intermetallic Alloy. Powder Metallurgy and Metal Ceramics. 2016. 55(5-6): 297. https://doi.org/10.1007/s11106-016-9805-0

86. Havryliuk O.O., Semchuk O.Y. Formation of periodic structures on the solid surface under laser irradiation. Ukrainian Journal of Physics. 2017. 62(1): 20. https://doi.org/10.15407/ujpe62.01.0020

87. Khomenko E.V., Baglyuk G.A., Minakova R.V. Effect of deformation processing on the properties of Cu-50% Cr composite. Powder Metallurgy and Metal Ceramics. 2009. 48(3-4): 211. https://doi.org/10.1007/s11106-009-9108-9

88. Mostovshchikov A.V., Ilyin A.P., Zabrodina I.K., Root L.O., Ismailov D.V. Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability. Key Engineering Materials. 2018. 769: 146. https://doi.org/10.4028/www.scientific.net/KEM.769.146

89. Sizonenko O.N., Baglyuk G.A., Taftai E.I., Zaichenko A.D., Lipyan E.V., Torpakov A.S., Zhdanov A.A., Pristash N.S. Dispersion and carburization of titanium powders by electric discharge. Powder Metallurgy and Metal Ceramics. 2013. 52(5-6): 247. https://doi.org/10.1007/s11106-013-9520-z

90. Semchuk O.Y., Biliuk A.A., Havryliuk O.O. The Kinetic Theory of the Width of Surface Plasmon Resonance Line in Metal Nanoparticles. Springer Proceedings in Physics. 2021. 264: 3. https://doi.org/10.1016/j.apsadv.2021.100057

91. Brodnikovskii D.N., Lugovoi N.I., Brodnikovskii N.P., Slyunyaev V.N., Kulak L.D., Vasil'ev A.D., Firstov S.A. Powder metallurgy production of Ti-5.4 wt.% Si alloy. I. Simulating the formation of powder particles by centrifugal atomization. Powder Metallurgy and Metal Ceramics. 2013. 52: 409. https://doi.org/10.1007/s11106-013-9541-7

92. Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance. Himia, Fizika ta Tehnologia Poverhni. 2022. 13(2): 556. https://doi.org/10.15407/hftp13.02.190

93. Baglyuk G.A., Napara-Volgina S.G., Vol'Fman V.I., Mamonova A.A., Pyatachuk S.G. Thermal synthesis of Fe-B 4C powder master alloys. Powder Metallurgy and Metal Ceramics. 2009. 48(7-8): 381. https://doi.org/10.1007/s11106-009-9156-1

94. Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. Journal of Non-Crystalline Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020

95. Brodnikovska I., Khomenkova L., Korsunska N., Polishchuk Yu., Brychevskyi M., Brodnikovskyi Ye., Brodnikovskyi D., Polishko I., Vasylyev O. The investigation of 10Sc1CeSZ structure transformation and ionic conductivity. Materials Today: Proceedings. 2022. 50(1): 487. https://doi.org/10.1016/j.matpr.2021.11.299

96. Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Width of the surface plasmon resonance line in spherical metal nanoparticles. Semiconductor Physics, Quantum Electronics and Optoelectronics. 2020. 23(3): 308. https://doi.org/10.15407/spqeo23.03.308

97. Baglyuk G.A., Terekhov V.N., Ternovoi Y.F. Structure and properties of powder austenitic die steels. Powder Metallurgy and Metal Ceramics. 2006. 45(7-8): 317. https://doi.org/10.1007/s11106-006-0083-0

98. Brodnikovska I., Korsunska N., Khomenkova L., Polishchuk Yu., Lavoryk S, Brychevskyi M., Brodnikovskyi Y., Vasylyev O. Grains, grain boundaries and total ionic conductivity of 10Sc1CeSZ and 8YSZ solid electrolytes affected by crystalline structure and dopant content. Materials Today: Proceedings. 2019. 6(2): 79. https://doi.org/10.1016/j.matpr.2018.10.078

99. Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids and Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034

100. Тоlochyn, О.І., Baglyuk, G.А., Tolochyna, O.V., Evych, Y.І., Podrezov, Y.M., Molchanovska, H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Materials Science. 2021. 56(4): 499. https://doi.org/10.1007/s11003-021-00456-y

101. Busch G. Neue Seignette-Electrika. Helv. Phys. Acta. 1938. 11: 269.

102. Hablützel J. Schweres Seignettesalz Dielectrische Untersuchungen an KNaC4H2D2O6·4D2O - Kristallen. Ibid. 1938. 11: 489.

103. Mason W.P. A Dynamic Measurement of the Elastic, Electric and Piezoelectric Constans of Rochelle salt. Phys. Rev. 1939. 55: 775. https://doi.org/10.1103/PhysRev.55.775

104. Bantle W. Die spezifische wärme seignette-electrischer substanzen. Dielectrische messungen an KD2PO4 - kristallen. Helv. Phys. Acta. 1942. 15: 373.

105. Arx A., Bantle W. Polarisation und spezifische wärme von KH2PO4. Helv. Phys. Acta. 1943. 16: 211.

106. Stephenson C.C., Hooly J.G. The heat capacity of potassium dihydrogen phosphate from 15 to 300o K. The anomaly at the Curie temperature. Am. Chem. Soc. 1944. 66: 1397. https://doi.org/10.1021/ja01236a054

107. Von Arx A., Bantle W. Der inverse piezoeffekt des seignette-elektrischen kristalls KH2PO4. Helv. Phys. Acta. 1944. 17: 298.

108. Mason W.P. The elastic, piezoelectric and dielectric constants of potassium dihydrogen phosphate and ammonium dihydrogen phosphate. Phys. Rev. 1946. 69: 73. https://doi.org/10.1103/PhysRev.69.173

109. Zwicker B. Elastische untersuchungen an NH4H2PO4 und KH2PO4. Helv. Phys. Acta. 1946. 19: 523.

110. Beck M., Granicher H. Elektrooptische untersuchungen an kristallen der KH2PO4 - gruppe. Helv. Phys. Acta. 1950. 23: 522.

111.Baumgartner H. Elektrische sättigungserscheinungen und elektro-kalorischer effekt von kaliumphosphat KH2PO4. Helv. Phys. Acta. 1950. 23: 651.

112. Baumgartner H. Unterschied der dielektrizitätskonstanten zwischen einem freien und einem geklemmten KH2PO4 - kristall. Helv. Phys. Acta. 1951. 24: 326.

113. Suemune Y. Thermal conductivity of the KH2PO4 - type single crystals. J. Phys. Soc. Japan. 1966. 21(3-4): -802. https://doi.org/10.1143/JPSJ.21.802

114. Suemune Y. Thermal conductivity of some ferroelectric crystals with hydrogen bonds. J. Phys. Soc. Japan. 1967. 22(3). 735. https://doi.org/10.1143/JPSJ.22.735

115. Strukov B.A., Amin M., Kopzik V.A. Comparative investigation of the specific heat of KH2PO4 (KDP) and KD2PO4 (DKDP) single crystals. Phys. Stat. Sol. 1968. 27(2): 741. https://doi.org/10.1002/pssb.19680270231

116. Ramanaiah K.V., Varma K.B.P. Dispersion of photoelastic constants in doped KDP crystsls. Bullettin of Matterials Science. 1983. 5(2): 147. https://doi.org/10.1007/BF02744028

117. Strukov B.A., Belov A.A. Thermal conductivity of ferroelastic crystals with an order-disorder phase transition on the example of KDP and DKDP. Izv. Academy of Sciences of the USSR. Ser. Physical. 1992. 56(10): 40.

118. Korotkov L.N., Kravchenko S.A., Gridnev S.A., Fedosyuk R.M. Elastic and inelastic properties of mixed crystals of potassium-ammonium dihydrogen phosphate with a low content of ammonium. Izv. Academy of Sciences of the USSR. Ser. Physical. 1998. 62(8): 1598.

119. Kenzig W. Ferroelectrics and antiferroelectrics (Moscow: IL, 1960)

120. Smolensky G.A., Bokov V.A., Isupov V.A., Krainik N.N., Pasynkov R.E., Shur M.S. Ferroelectrics and antiferroelectrics (L.: Nauka, 1971).

121. Smolensky G.A. (Ed.) Physics of ferroelectric phenomena (Moscow: Nauka, 1985).

122. Rudyak V.M. Physical properties of ferroelectric crystals (Kalinin: KSU, 1989).

123. Matycina Z.A. Investigation of the paraelectric-ferroelectric phase transition in KDP crystals.. Izv. universities. Physics. 2000. 9: 112.

124. Matysina Z.A., Modlinsky M., Chumak V. Investigation of paraelectrician-ferroelectrician phase transition in KDP crystals. In: 4th Int. Symp. "New Materials for Electrochemical Systems". (Canada, Montreal, 2001). P. 11.

125. Zaginaichenko S.Yu., Matysina Z.A., Schur D.V., Chumak V.A. Spontaneous polarization and its effect on physical characteristics of potassium, rubidium and cesium dehydrophosphates and arsenates. In: Proceed. VII Int. Conf. "ICHMS'2001". (Alushta, Ukraine, 2001). 306. https://doi.org/10.1007/978-94-010-0600-2_20

126. West J. A quantitative X-ray analysis of the structure of potassium dihydrogen phosphate. Krist. 1930. 74: 306. https://doi.org/10.1524/zkri.1930.74.1.306

127. Ubbelohde A.R., Woodward I. Structure and thermal properties associated with some hydrogen bondsin crystals. VII. Behaviour of KH2PO4 and KH2AsO4 on cooling. Proc. Roy. Soc. 1947. 188A(25): 358. https://doi.org/10.1098/rspa.1947.0014

128. Frazer B.C., Pepinsky R. X-ray analysis of the ferroelectric transition in KH2PO4. Acta Cryst. 1953. 6: 273. https://doi.org/10.1107/S0365110X53000776

129. Barkla H.M., Finlayson D.M. The properties of KH2PO4 below the Curie point. Phil. Mag. 1953. 44(7):109. https://doi.org/10.1080/14786440208520284

130. Bacon G.E., Pease R.S. A neutron diffraction study of potassium dihydrogen phosphate by fourier synthesis. Proc. Roy. Soc. 1953. 220A: 397. https://doi.org/10.1098/rspa.1953.0195

131. Peterson S.W., Levy H.A. Neutron diffraction study of tetragonal potassium dihydrogen phosphate. J. Chem. Phys. 1953. 21: 2084. https://doi.org/10.1063/1.1698766

132. Levy H.A., Peterson S.W., Simonsen S.H. Neutron diffraction study of the ferroelectric modification of potassium dihydrogen phosphate. Phys. Rev. 1954. 93: 1120. https://doi.org/10.1103/PhysRev.93.1120

133. Bacon G.E., Pease R.S. A neutron-diffraction study of the ferroelectric transition of potassium dihydrogen phosphate. Proc. Roy. Soc. 1955. 230A: 359. https://doi.org/10.1098/rspa.1955.0139

134. Smirnov A.A. Molecular-kinetic theory of metals (Moscow: Nauka, 1966).

Опубліковано
2023-12-03
Як цитувати
Золотаренко , А., Золотаренко, О., Матисіна , З., Аханова , Н., Уалханова , М., Щур , Д., Габдуллін , М., Золотаренко , О., Рудакова , О., Чимбай , М., Тарасенко , Ю., Гаврилюк, О., Швачко, Н., & Жирко, Ю. (2023). Порошки кристалічного дигідрофосфату калію (KDP) . Поверхня, (15(30), 200-224. https://doi.org/10.15407/Surface.2023.15.200
Розділ
Наноматеріали і нанотехнології